Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel W. Chaney is active.

Publication


Featured researches published by Nathaniel W. Chaney.


Bulletin of the American Meteorological Society | 2014

A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security

Justin Sheffield; Eric F. Wood; Nathaniel W. Chaney; Kaiyu Guan; Sara Sadri; Xing Yuan; L. O. Olang; Abou Amani; Abdou Ali; Siegfried Demuth; Laban Ogallo

Drought is one of the leading impediments to development in Africa. Much of the continent is dependent on rain-fed agriculture, which makes it particularly susceptible to climate variability. Monitoring drought and providing timely seasonal forecasts are essential for integrated drought risk reduction. Current approaches in developing regions have generally been limited, however, in part because of unreliable monitoring networks. Operational seasonal climate forecasts are also deficient and often reliant on statistical regressions, which are unable to provide detailed information relevant for drought assessment. However, the wealth of data from satellites and recent advancements in large-scale hydrological modeling and seasonal climate model predictions have enabled the development of state-of-the-art monitoring and prediction systems that can help address many of the problems inherent to developing regions. An experimental drought monitoring and forecast system for sub-Saharan Africa is described that is...


Journal of Hydrometeorology | 2013

Probabilistic Seasonal Forecasting of African Drought by Dynamical Models

Xing Yuan; Eric F. Wood; Nathaniel W. Chaney; Justin Sheffield; Jonghun Kam; Miaoling Liang; Kaiyu Guan

AbstractAs a natural phenomenon, drought can have devastating impacts on local populations through food insecurity and famine in the developing world, such as in Africa. In this study, the authors have established a seasonal hydrologic forecasting system for Africa. The system is based on the Climate Forecast System, version 2 (CFSv2), and the Variable Infiltration Capacity (VIC) land surface model. With a set of 26-yr (1982–2007) seasonal hydrologic hindcasts run at 0.25°, the probabilistic drought forecasts are validated using the 6-month Standard Precipitation Index (SPI6) and soil moisture percentile as indices. In terms of Brier skill score (BSS), the system is more skillful than climatology out to 3–5 months, except for the forecast of soil moisture drought over central Africa. The spatial distribution of BSS, which is similar to the pattern of persistency, shows more heterogeneity for soil moisture than the SPI6. Drought forecasts based on SPI6 are generally more skillful than for soil moisture, an...


Water Resources Research | 2015

High‐resolution modeling of the spatial heterogeneity of soil moisture: Applications in network design

Nathaniel W. Chaney; Joshua K. Roundy; Julio E. Herrera-Estrada; Eric F. Wood

The spatial heterogeneity of soil moisture remains a persistent challenge in the design of in situ measurement networks, spatial downscaling of coarse estimates (e.g., satellite retrievals), and hydrologic modeling. To address this challenge, we analyze high-resolution (∼9 m) simulated soil moisture fields over the Little River Experimental Watershed (LREW) in Georgia, USA, to assess the role and interaction of the spatial heterogeneity controls of soil moisture. We calibrate and validate the TOPLATS distributed hydrologic model with high to moderate resolution land and meteorological data sets to provide daily soil moisture fields between 2004 and 2008. The results suggest that topography and soils are the main drivers of spatial heterogeneity over the LREW. We use this analysis to introduce a novel network design method that uses land data sets as proxies of the main drivers of local heterogeneity (topography, land cover, and soil properties) to define unique and representative hydrologic similar units (subsurface, surface, and vegetation) for probe placement. The calibration of the hydrologic model and network design method illustrates how the use of hydrologic similar units in hydrologic modeling could minimize computation and guide efforts toward improved macroscale land surface modeling.


Journal of Climate | 2014

Development of a High-Resolution Gridded Daily Meteorological Dataset over Sub-Saharan Africa: Spatial Analysis of Trends in Climate Extremes

Nathaniel W. Chaney; Justin Sheffield; Gabriele Villarini; Eric F. Wood

AbstractAssessing changes in the frequency and intensity of extreme meteorological events and their impact on water resources, agriculture, and infrastructure is necessary to adequately prepare and adapt to future change. This is a challenge in data-sparse regions such as sub-Saharan Africa, where a lack of high-density and temporally consistent long-term in situ measurements complicates the analysis. To address this, a temporally homogenous and high-temporal- and high-spatial-resolution meteorological dataset is developed over sub-Saharan Africa (5°S–25°N), covering the time period between 1979 and 2005. It is developed by spatially downscaling the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis to a 0.1° spatial resolution, detecting and correcting for temporal inhomogeneities, and by removing random errors and biases by assimilating quality-controlled and gap-filled Global Summary of the Day (GSOD) in situ measurements. The dataset is then u...


Geophysical Research Letters | 2016

An initial assessment of SMAP soil moisture retrievals using high‐resolution model simulations and in situ observations

Ming Pan; Xitian Cai; Nathaniel W. Chaney; Dara Entekhabi; Eric F. Wood

Author(s): Pan, M; Cai, X; Chaney, NW; Entekhabi, D; Wood, EF | Abstract: ©2016. American Geophysical Union. All Rights Reserved. At the end of its first year of operation, we compare soil moisture retrievals from the Soil Moisture Active Passive (SMAP) mission to simulations from a land surface model with meteorological forcing downscaled from observations/reanalysis and in situ observations from sparse monitoring networks within continental United States (CONUS). The radar failure limits the duration of comparisons for the active and combined products (~3 months). Nevertheless, the passive product compares very well against in situ observations over CONUS. On average, SMAP compares to the in situ data even better than the land surface model and provides significant added value on top of the model and thus good potential for data assimilation. At large scale, SMAP is in good agreement with the model in most of CONUS with less-than-expected degradation over mountainous areas. Lower correlation between SMAP and the model is seen in the forested east CONUS and significantly lower over the Canadian boreal forests.


Environmental Research Letters | 2014

Changing water availability during the African maize-growing season, 1979?2010

Lyndon D. Estes; Nathaniel W. Chaney; Julio E. Herrera-Estrada; Justin Sheffield; Kelly K. Caylor; Eric F. Wood

Understanding how global change is impacting African agriculture requires a full physical accounting of water supply and demand, but accurate, gridded data on key drivers (e.g., humidity) are generally unavailable. We used a new bias-corrected meteorological dataset to analyze changes in precipitation (supply), potential evapotranspiration (, demand), and water availability (expressed as the ratio ) in 20 countries (focusing on their maize-growing regions and seasons), between 1979 and 2010, and the factors driving changes in . Maize-growing areas in Southern Africa, particularly South Africa, benefitted from increased water availability due in large part to demand declines driven primarily by declining net radiation, increasing vapor pressure, and falling temperatures (with no effect from changing windspeed), with smaller increases in supply. Sahelian zone countries in West Africa, as well as Ethiopia in East Africa, had strong increases in availability driven primarily by rainfall rebounding from the long-term Sahelian droughts, with little change or small reductions in demand. However, intra-seasonal supply variability generally increased in West and East Africa. Across all three regions, declining net radiation contributed downwards pressure on demand, generally over-riding upwards pressure caused by increasing temperatures, the regional effects of which were largest in East Africa. A small number of countries, mostly in or near East Africa (Tanzania and Malawi) experienced declines in water availability primarily due to decreased rainfall, but exacerbated by increasing demand. Much of the reduced water availability in East Africa occurred during the more sensitive middle part of the maize-growing season, suggesting negative consequences for maize production.


Water Resources Research | 2016

Spatial downscaling of precipitation using adaptable random forests

Xiaogang He; Nathaniel W. Chaney; Marc Schleiss; Justin Sheffield

This paper introduces Prec-DWARF (Precipitation Downscaling With Adaptable Random Forests), a novel machine-learning based method for statistical downscaling of precipitation. Prec-DWARF sets up a nonlinear relationship between precipitation at fine resolution and covariates at coarse/fine resolution, based on the advanced binary tree method known as Random Forests (RF). In addition to a single RF, we also consider a more advanced implementation based on two independent RFs which yield better results for extreme precipitation. Hourly gauge-radar precipitation data at 0.125° from NLDAS-2 are used to conduct synthetic experiments with different spatial resolutions (0.25°, 0.5° and 1°). Quantitative evaluation of these experiments demonstrates that Prec-DWARF consistently outperforms the baseline (i.e., bi-linear interpolation in this case) and can reasonably reproduce the spatial and temporal patterns, occurrence and distribution of observed precipitation fields. However, Prec-DWARF with a single RF significantly underestimates precipitation extremes and often cannot correctly recover the fine-scale spatial structure, especially for the 1° experiments. Prec-DWARF with a double RF exhibits improvement in the simulation of extreme precipitation as well as its spatial and temporal structures, but variogram analyses show that the spatial and temporal variability of the downscaled fields are still strongly underestimated. Covariate feature importance analysis shows that the most important predictors for the downscaling are the coarse scale precipitation values over adjacent grid cells as well as the distance to the closest dry grid cell (i.e., the dry drift). The encouraging results demonstrate the potential of Prec-DWARF and machine-learning based techniques in general for the statistical downscaling of precipitation. This article is protected by copyright. All rights reserved.


Water Resources Research | 2017

Validation of SMAP soil moisture for the SMAPVEX15 field campaign using a hyper‐resolution model

Xitian Cai; Ming Pan; Nathaniel W. Chaney; Andreas Colliander; Sidharth Misra; Michael H. Cosh; Wade T. Crow; Thomas J. Jackson; Eric F. Wood

Accurate global mapping of soil moisture is the goal of the Soil Moisture Active Passive (SMAP) mission, which is expected to improve the estimation of water, energy, and carbon exchanges between the land and the atmosphere. Like other satellite products, the SMAP soil moisture retrievals need to be validated, with the validation relying heavily on in situ measurements. However, a one-to-one comparison is ill advised due to the spatial mismatch of the large SMAP footprint (∼40 km) and the point scale in situ measurements. This study uses a recently developed hyper-resolution land surface model—HydroBlocks—as a tool to upscale in situ soil moisture measurements for the SMAPVEX15 (SMAP Validation Experiment 2015) field campaign during 2–18 August 2015. Calibrated against in situ observation, HydroBlocks shows a satisfactory Kling-Gupta efficiency (KGE) of 0.817 and RMSE of 0.019 m3/m3 for the calibration period. These results indicate that HydroBlocks can be used to upscale in situ measurements for this site. Different from previous studies, here in situ measurements are upscaled using a land surface model without bias correction. The upscaled soil moisture is then used to evaluate SMAP (passive) soil moisture products. The comparison of the upscaled network to SMAP shows that the retrievals are generally able to capture the areal-averaged soil moisture temporal variations. However, SMAP appears to be oversensitive to summer precipitation. We expect these findings can be used to improve the SMAP soil moisture product and thus facilitate its usage in studying the water, energy, and carbon cycles.


Environmental Research Letters | 2015

Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

Patrick M. Reed; Nathaniel W. Chaney; Jonathan D. Herman; Matthew Phillip Ferringer; Eric F. Wood

At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ?collapse? of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks.


Journal of Geophysical Research | 2016

Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

Nathaniel W. Chaney; Jonathan D. Herman; Michael B. Ek; Eric F. Wood

With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilinkitevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency (KGE) performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross-validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

Collaboration


Dive into the Nathaniel W. Chaney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Pan

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cédric H. David

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dara Entekhabi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David J. Gochis

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

James S. Famiglietti

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John T. Reager

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge