Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel W. Snyder is active.

Publication


Featured researches published by Nathaniel W. Snyder.


Circulation | 2016

Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure.

Kenneth C Bedi; Nathaniel W. Snyder; Jeffrey Brandimarto; Moez Karim Aziz; Clementina Mesaros; Andrew J. Worth; Linda L. Wang; Ali Javaheri; Ian A. Blair; Kenneth B. Margulies; J. Eduardo Rame

Background— The failing human heart is characterized by metabolic abnormalities, but these defects remains incompletely understood. In animal models of heart failure there is a switch from a predominance of fatty acid utilization to the more oxygen-sparing carbohydrate metabolism. Recent studies have reported decreases in myocardial lipid content, but the inclusion of diabetic and nondiabetic patients obscures the distinction of adaptations to metabolic derangements from adaptations to heart failure per se. Methods and Results— We performed both unbiased and targeted myocardial lipid surveys using liquid chromatography-mass spectroscopy in nondiabetic, lean, predominantly nonischemic, advanced heart failure patients at the time of heart transplantation or left ventricular assist device implantation. We identified significantly decreased concentrations of the majority of myocardial lipid intermediates, including long-chain acylcarnitines, the primary subset of energetic lipid substrate for mitochondrial fatty acid oxidation. We report for the first time significantly reduced levels of intermediate and anaplerotic acyl-coenzyme A (CoA) species incorporated into the Krebs cycle, whereas the myocardial concentration of acetyl-CoA was significantly increased in end-stage heart failure. In contrast, we observed an increased abundance of ketogenic &bgr;-hydroxybutyryl-CoA, in association with increased myocardial utilization of &bgr;-hydroxybutyrate. We observed a significant increase in the expression of the gene encoding succinyl-CoA:3-oxoacid-CoA transferase, the rate-limiting enzyme for myocardial oxidation of &bgr;-hydroxybutyrate and acetoacetate. Conclusions— These findings indicate increased ketone utilization in the severely failing human heart independent of diabetes mellitus, and they support the role of ketone bodies as an alternative fuel and myocardial ketone oxidation as a key metabolic adaptation in the failing human heart.


eLife | 2016

Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

Anthony J. Covarrubias; Halil Ibrahim Aksoylar; Jiujiu Yu; Nathaniel W. Snyder; Andrew J. Worth; Shankar S. Iyer; Jia-Wei Wang; Issam Ben-Sahra; Vanessa Byles; Tiffany Polynne-Stapornkul; Erika C Espinosa; Dudley W. Lamming; Brendan D. Manning; Yijing Zhang; Ian A. Blair; Tiffany Horng

Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001


Annual Review of Public Health | 2017

The Changing Epidemiology of Autism Spectrum Disorders

Kristen Lyall; Lisa A. Croen; Julie L. Daniels; M. Daniele Fallin; Christine Ladd-Acosta; Brian K. Lee; Bo Y. Park; Nathaniel W. Snyder; Diana E. Schendel; Heather E. Volk; Gayle C. Windham; Craig J. Newschaffer

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with lifelong impacts. Genetic and environmental factors contribute to ASD etiology, which remains incompletely understood. Research on ASD epidemiology has made significant advances in the past decade. Current prevalence is estimated to be at least 1.5% in developed countries, with recent increases primarily among those without comorbid intellectual disability. Genetic studies have identified a number of rare de novo mutations and gained footing in the areas of polygenic risk, epigenetics, and gene-by-environment interaction. Epidemiologic investigations focused on nongenetic factors have established advanced parental age and preterm birth as ASD risk factors, indicated that prenatal exposure to air pollution and short interpregnancy interval are potential risk factors, and suggested the need for further exploration of certain prenatal nutrients, metabolic conditions, and exposure to endocrine-disrupting chemicals. We discuss future challenges and goals for ASD epidemiology as well as public health implications.


Cell Reports | 2015

ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence

Katherine M. Aird; Andrew J. Worth; Nathaniel W. Snyder; Joyce V. Lee; Sharanya Sivanand; Qin Liu; Ian A. Blair; Kathryn E. Wellen; Rugang Zhang

Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor-suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in the cellular response to replication stress has been little explored. Here, we report that ataxia telangiectasia mutated (ATM) plays a central role in regulating the cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of deoxyribonucleotide triphosphate (dNTP) levels through both upregulation of the pentose phosphate pathway via increased glucose-6-phosphate dehydrogenase (G6PD) activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence.


Journal of Clinical Investigation | 2016

Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality

Asim Saha; Roddy S. O’Connor; Govindarajan Thangavelu; Scott B. Lovitch; Durga Bhavani Dandamudi; Caleph B. Wilson; Benjamin G. Vincent; Victor Tkachev; Jan M. Pawlicki; Scott N. Furlan; Leslie S. Kean; Kazutoshi Aoyama; Patricia A. Taylor; Angela Panoskaltsis-Mortari; Rocio Foncea; Parvathi Ranganathan; Steven M. Devine; Joel S. Burrill; Lili Guo; Catarina Sacristan; Nathaniel W. Snyder; Ian A. Blair; Michael C. Milone; Michael L. Dustin; James L. Riley; David A. Bernlohr; William J. Murphy; Brian T. Fife; David H. Munn; Jeffrey S. Miller

Programmed death ligand-1 (PD-L1) interaction with PD-1 induces T cell exhaustion and is a therapeutic target to enhance immune responses against cancer and chronic infections. In murine bone marrow transplant models, PD-L1 expression on host target tissues reduces the incidence of graft-versus-host disease (GVHD). PD-L1 is also expressed on T cells; however, it is unclear whether PD-L1 on this population influences immune function. Here, we examined the effects of PD-L1 modulation of T cell function in GVHD. In patients with severe GVHD, PD-L1 expression was increased on donor T cells. Compared with mice that received WT T cells, GVHD was reduced in animals that received T cells from Pdl1-/- donors. PD-L1-deficient T cells had reduced expression of gut homing receptors, diminished production of inflammatory cytokines, and enhanced rates of apoptosis. Moreover, multiple bioenergetic pathways, including aerobic glycolysis, oxidative phosphorylation, and fatty acid metabolism, were also reduced in T cells lacking PD-L1. Finally, the reduction of acute GVHD lethality in mice that received Pdl1-/- donor cells did not affect graft-versus-leukemia responses. These data demonstrate that PD-L1 selectively enhances T cell-mediated immune responses, suggesting a context-dependent function of the PD-1/PD-L1 axis, and suggest selective inhibition of PD-L1 on donor T cells as a potential strategy to prevent or ameliorate GVHD.


Steroids | 2015

Ultrasensitive quantification of serum estrogens in postmenopausal women and older men by liquid chromatography-tandem mass spectrometry

Qingqing Wang; Kannan Rangiah; Clementina Mesaros; Nathaniel W. Snyder; Anil Vachani; Haifeng Song; Ian A. Blair

An ultrasensitive stable isotope dilution liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for multiplexed quantitative analysis of six unconjugated and conjugated estrogens in human serum. The quantification utilized a new derivatization procedure, which formed analytes as pre-ionized N-methyl pyridinium-3-sulfonyl (NMPS) derivatives. This method required only 0.1mL of human serum, yet was capable of simultaneously quantifying six estrogens within 20min. The lower limit of quantitation (LLOQ) for estradiol (E2), 16α-hydroxy (OH)-E2, 4-methoxy (MeO)-E2 and 2-MeO-E2 was 1fg on column, and was 10fg on column for 4-OH-E2 and 2-OH-E2. All analytes demonstrated a linear response from 0.5 to 200pg/mL (5-2000pg/mL for 4-OH-E2 and 2-OH-E2). Using this validated method, the estrogen levels in human serum samples from 20 female patients and 20 male patients were analyzed and compared. The levels found for unconjugated serum E2 from postmenopausal women (mean 2.7pg/mL) were very similar to those obtained by highly sensitive gas chromatography-mass spectrometry (GC-MS) methodology. However, the level obtained in serum from older men (mean 9.5pg/mL) was lower than has been reported previously by both GC-MS and LC-MS procedures. The total (unconjugated+conjugated) 4-MeO-E2 levels were significantly higher in female samples compared with males (p<0.05). The enhanced sensitivity offered by the present method will allow for a more specific analysis of estrogens and their metabolites. Our observations might suggest that the level of total 4-MeO-E2 could be a potential biomarker for breast cancer cases.


Journal of Biological Chemistry | 2014

Inhibition of Neuronal Cell Mitochondrial Complex I with Rotenone Increases Lipid β-Oxidation, Supporting Acetyl-Coenzyme A Levels

Andrew J. Worth; Sankha S. Basu; Nathaniel W. Snyder; Clementina Mesaros; Ian A. Blair

Background: Rotenone exposure is associated with Parkinson disease in humans and rodents, although the exact mechanism remains unknown. Results: Rotenone increased lipid breakdown and glutamine utilization. Conclusion: Metabolic shifts compensated for impaired energy production in response to rotenone. Significance: Metabolic abnormalities associated with mitochondrial dysfunction may play an important role in the development of neurodegeneration. Rotenone is a naturally occurring mitochondrial complex I inhibitor with a known association with parkinsonian phenotypes in both human populations and rodent models. Despite these findings, a clear mechanistic link between rotenone exposure and neuronal damage remains to be determined. Here, we report alterations to lipid metabolism in SH-SY5Y neuroblastoma cells exposed to rotenone. The absolute levels of acetyl-CoA were found to be maintained despite a significant decrease in glucose-derived acetyl-CoA. Furthermore, palmitoyl-CoA levels were maintained, whereas the levels of many of the medium-chain acyl-CoA species were significantly reduced. Additionally, using isotopologue analysis, we found that β-oxidation of fatty acids with varying chain lengths helped maintain acetyl-CoA levels. Rotenone also induced increased glutamine utilization for lipogenesis, in part through reductive carboxylation, as has been found previously in other cell types. Finally, palmitoylcarnitine levels were increased in response to rotenone, indicating an increase in fatty acid import. Taken together, these findings show that alterations to lipid and glutamine metabolism play an important compensatory role in response to complex I inhibition by rotenone.


Chemical Research in Toxicology | 2011

11-Oxoeicosatetraenoic acid is a cyclooxygenase-2/15-hydroxyprostaglandin dehydrogenase-derived antiproliferative eicosanoid.

Xiaojing Liu; Suhong Zhang; Jasbir S. Arora; Nathaniel W. Snyder; Sumit J. Shah; Ian A. Blair

Previously, we established that 11(R)-hydroxy-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (HETE) was a significant cyclooxygenase (COX)-2-derived arachidonic acid (AA) metabolite in epithelial cells. Stable isotope dilution chiral liquid chromatography (LC)-electron capture atmospheric pressure chemical ionization (ECAPCI)/mass spectrometry (MS) was used to quantify COX-2-derived eicosanoids in the human colorectal adenocarcinoma (LoVo) epithelial cell line, which expresses both COX-2 and 15-hydroxyprostaglandin dehydrogenase (15-PGDH). 11(R)-HETE secretion reached peak concentrations within minutes after AA addition before rapidly diminishing, suggesting further metabolism had occurred. Surprisingly, recombinant 15-PGDH, which is normally specific for oxidation of eicosanoid 15(S)-hydroxyl groups, was found to convert 11(R)-HETE to 11-oxo-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (ETE). Furthermore, LoVo cell lysates converted 11(R)-HETE to 11-oxo-ETE and inhibition of 15-PGDH with 5-[[4-(ethoxycarbonyl)phenyl]azo]-2-hydroxy-benzeneacetic acid (CAY10397) (50 μM) significantly suppressed endogenous 11-oxo-ETE production with a corresponding increase in 11(R)-HETE. These data confirmed COX-2 and 15-PGDH as enzymes responsible for 11-oxo-ETE biosynthesis. Finally, addition of AA to the LoVo cells resulted in rapid secretion of 11-oxo-ETE into the media, reaching peak levels within 20 min of starting the incubation. This was followed by a sharp decrease in 11-oxo-ETE levels. Glutathione (GSH) S-transferase (GST) was found to metabolize 11-oxo-ETE to the 11-oxo-ETE-GSH (OEG)-adduct in LoVo cells, as confirmed by LC–MS/MS analysis. Bromodeoxyuridine (BrdU)-based cell proliferation assays in human umbilical vein endothelial cells (HUVECs) revealed that the half-maximal inhibitory concentration (IC50) of 11-oxo-ETE for inhibition of HUVEC proliferation was 2.1 μM. These results show that 11-oxo-ETE is a novel COX-2/15-PGDH-derived eicosanoid, which inhibits endothelial cell proliferation with a potency that is similar to that observed for 15d-PGJ2.


Journal of Biological Chemistry | 2017

Impact of High Fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels

Alessandro Carrer; Joshua L.D. Parris; Sophie Trefely; Ryan A. Henry; David C. Montgomery; AnnMarie Torres; John M. Viola; Yin-Ming Kuo; Ian A. Blair; Jordan L. Meier; Andrew J. Andrews; Nathaniel W. Snyder; Kathryn E. Wellen

Cellular metabolism dynamically regulates the epigenome via availability of the metabolite substrates of chromatin-modifying enzymes. The impact of diet on the metabolism-epigenome axis is poorly understood but could alter gene expression and influence metabolic health. ATP citrate-lyase produces acetyl-CoA in the nucleus and cytosol and regulates histone acetylation levels in many cell types. Consumption of a high-fat diet (HFD) results in suppression of ATP citrate-lyase levels in tissues such as adipose and liver, but the impact of diet on acetyl-CoA and histone acetylation in these tissues remains unknown. Here we examined the effects of HFD on levels of acyl-CoAs and histone acetylation in mouse white adipose tissue (WAT), liver, and pancreas. We report that mice consuming a HFD have reduced levels of acetyl-CoA and/or acetyl-CoA:CoA ratio in these tissues. In WAT and the pancreas, HFD also impacted the levels of histone acetylation; in particular, histone H3 lysine 23 acetylation was lower in HFD-fed mice. Genetic deletion of Acly in cultured adipocytes also suppressed acetyl-CoA and histone acetylation levels. In the liver, no significant effects on histone acetylation were observed with a HFD despite lower acetyl-CoA levels. Intriguingly, acetylation of several histone lysines correlated with the acetyl-CoA: (iso)butyryl-CoA ratio in liver. Butyryl-CoA and isobutyryl-CoA interacted with the acetyltransferase P300/CBP-associated factor (PCAF) in liver lysates and inhibited its activity in vitro. This study thus provides evidence that diet can impact tissue acyl-CoA and histone acetylation levels and that acetyl-CoA abundance correlates with acetylation of specific histone lysines in WAT but not in the liver.


Rapid Communications in Mass Spectrometry | 2014

Stable isotope dilution liquid chromatography/mass spectrometry analysis of cellular and tissue medium‐ and long‐chain acyl‐coenzyme A thioesters

Nathaniel W. Snyder; Sankha S. Basu; Zinan Zhou; Andrew J. Worth; Ian A. Blair

RATIONALE Acyl-Coenzyme A (CoA) thioesters are the principal form of activated carboxylates in cells and tissues. They are employed as acyl carriers that facilitate the transfer of acyl groups to lipids and proteins. Quantification of medium- and long-chain acyl-CoAs represents a significant bioanalytical challenge because of their instability. METHODS Stable isotope dilution liquid chromatography/selected reaction monitoring-mass spectrometry (LC/SRM-MS) provides the most specific and sensitive method for the analysis of CoA species. However, relevant heavy isotope standards are not available and they are challenging to prepare by chemical synthesis. Stable isotope labeling by essential nutrients in cell culture (SILEC), developed originally for the preparation of stable isotope labeled short-chain acyl-CoA thioester standards, has now been extended to medium-chain and long-chain acyl-CoAs and used for LC/SRM-MS analyses. RESULTS Customized SILEC standards with >98% isotopic purity were prepared using mouse Hepa 1c1c7 cells cultured in pantothenic-free media fortified with [(13) C3 (15) N1 ]-pantothenic acid and selected fatty acids. A SILEC standard in combination with LC/SRM-MS was employed to quantify cellular concentrations of arachidonoyl-CoA (a representative long-chain acyl-CoA) in two human colon cancer cell lines. A panel of SILEC standards was also employed in combination LC/SRM-MS to quantify medium- and long-chain acyl-CoAs in mouse liver. CONCLUSIONS This new SILEC-based method in combination with LC/SRM-MS will make it possible to rigorously quantify medium- and long-chain acyl-CoAs in cells and tissues. The method will facilitate studies of medium- and long-chain acyl-CoA dehydrogenase deficiencies as well as studies on the role of medium- and long-chain acyl-CoAs in cellular metabolism.

Collaboration


Dive into the Nathaniel W. Snyder's collaboration.

Top Co-Authors

Avatar

Ian A. Blair

Center for Excellence in Education

View shared research outputs
Top Co-Authors

Avatar

Clementina Mesaros

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Worth

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn E. Wellen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lili Guo

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sankha S. Basu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joyce V. Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alessandro Carrer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge