Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nather Madjid is active.

Publication


Featured researches published by Nather Madjid.


Neuropsychopharmacology | 2003

Analysis of the role of the 5-HT1B receptor in spatial and aversive learning in the rat.

Maria Åhlander-Lüttgen; Nather Madjid; P.A. Schött; Johan Sandin; Sven Ove Ögren

The present study examined the role of the 5-HT1B receptor in learning and memory. The ability of the 5-HT1B receptor agonist anpirtoline and the selective 5-HT1B receptor antagonist NAS-181 to affect spatial learning in the water maze (WM) and aversive learning in the passive avoidance (PA) task were examined in the rat. Anpirtoline (0.1–1.0 mg/kg, s.c.) caused a dose-dependent impairment of learning and memory in both the WM and PA tasks. NAS-181 (1.0–10 mg/kg, s.c.) failed to alter performance of the WM task, but produced a dose-dependent (0.1–20 mg/kg) facilitation of PA retention. Furthermore, treatment with NAS-181 (10 mg/kg) fully blocked the impairment of the WM and PA performance caused by anpirtoline (1.0 mg/kg). In contrast, NAS-181 (3.0–10 mg/kg) did not attenuate the spatial learning deficit and the impairment of PA retention caused by scopolamine (0.1 mg/kg in WM task, 0.3 mg/kg in PA task, s.c.), a nonselective muscarinic antagonist. Moreover, a subthreshold dose of scopolamine (0.1 mg/kg) blocked the facilitation of PA retention induced by NAS-181 (1.0–10 mg/kg). In addition, the behavioral disturbances (eg thigmotaxic swimming and platform deflections) induced by anpirtoline and scopolamine were analyzed in the WM task and correlated with WM performance. These results indicate that: (1) 5-HT1B receptor stimulation and blockade result in opposite effects in two types of cognitive tasks in the rat, and that (2) the 5-HT1B antagonist NAS-181 can facilitate some aspects of cognitive function, most likely via an increase of cholinergic transmission. These results suggest that 5-HT1B receptor antagonists may have a potential in the treatment of cognitive deficits resulting from loss of cholinergic transmission.


Neuropharmacology | 2005

Analysis of the role of 5-HT1A receptors in spatial and aversive learning in the rat

Maria Lüttgen; Elin Elvander; Nather Madjid; Sven Ove Ögren

The role of the brain 5-HT1A receptor in cognition was examined in the water maze (WM) and passive avoidance (PA) tasks in the male rat. Pre-training administration of the 5-HT1A receptor agonist 8-OH-DPAT impaired WM performance and facilitated PA retention at low doses (0.01 and 0.03 mg/kg) and impaired PA retention at higher doses (0.1-1.0 mg/kg). The 5-HT1A receptor antagonist NAD-299 produced a dose-dependent facilitation of PA retention. In contrast, the 5-HT1A receptor antagonists NAD-299 and WAY-100635 failed to alter acquisition and retention in the WM. The impairments in WM and PA (but not facilitation in PA) induced by 8-OH-DPAT were blocked by NAD-299. Furthermore, NAD-299 prevented the PA impairments induced by the muscarinic antagonist scopolamine or the NMDA receptor antagonist MK-801. In contrast, NAD-299 and WAY-100635 failed to attenuate the WM impairment induced by scopolamine, probably due to the failure of 5-HT1A receptor blockade to attenuate the sensorimotor disturbances induced by scopolamine. These results indicate that 5-HT1A receptor stimulation and blockade result in opposite effects in two types of cognitive tasks in the rat, and that 5-HT1A receptor blockade can facilitate some aspects of cognitive function, probably via modulation of cholinergic and glutamatergic transmissions. This suggests that 5-HT1A receptor antagonists may have a potential role in the treatment of human degenerative disorders associated with cognitive deficits.


Neuropsychopharmacology | 2006

Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice.

Alexander Kuzmin; Nather Madjid; Lars Terenius; Sven Ove Ögren; Georgy Bakalkin

Effects of big dynorphin (Big Dyn), a prodynorphin-derived peptide consisting of dynorphin A (Dyn A) and dynorphin B (Dyn B) on memory function, anxiety, and locomotor activity were studied in mice and compared to those of Dyn A and Dyn B. All peptides administered i.c.v. increased step-through latency in the passive avoidance test with the maximum effective doses of 2.5, 0.005, and 0.7 nmol/animal, respectively. Effects of Big Dyn were inhibited by MK 801 (0.1 mg/kg), an NMDA ion-channel blocker whereas those of dynorphins A and B were blocked by the κ-opioid antagonist nor-binaltorphimine (6 mg/kg). Big Dyn (2.5 nmol) enhanced locomotor activity in the open field test and induced anxiolytic-like behavior both effects blocked by MK 801. No changes in locomotor activity and no signs of anxiolytic-like behavior were produced by dynorphins A and B. Big Dyn (2.5 nmol) increased time spent in the open branches of the elevated plus maze apparatus with no changes in general locomotion. Whereas dynorphins A and B (i.c.v., 0.05 and 7 nmol/animal, respectively) produced analgesia in the hot-plate test Big Dyn did not. Thus, Big Dyn differs from its fragments dynorphins A and B in its unique pattern of memory enhancing, locomotor- and anxiolytic-like effects that are sensitive to the NMDA receptor blockade. The findings suggest that Big Dyn has its own function in the brain different from those of the prodynorphin-derived peptides acting through κ-opioid receptors.


Brain Research | 2009

The nociceptin system and hippocampal cognition in mice A pharmacological and genetic analysis

Alexander Kuzmin; Nather Madjid; Björn Johansson; Lars Terenius; Sven Ove Ögren

This study examines the effects of NOP agonists nociceptin/orphanin FQ (N/OFQ) and Ro 64-6198, NOP antagonists [Nphe(1)]N/OFQ(1-13)-NH(2) Nphe(1) and naloxone benzoylhydrazone (NalBzoH) on spatial memory in NMRI mice and pronociceptin (proNC) knockout (KO) mice using the water maze task. N/OFQ, administered i.c.v. (1, 5 and 10 nmol/mouse) and into hippocampal CA3 (1 nmol/mouse, bilaterally), impaired acquisition and retention in the maze. Impairments were blocked by pre-treatment with Nphe(1) (10 nmol, i.c.v.). Ro 64-6198 (0.1-0.3-1 mg/kg i.p.) also dose-dependently impaired learning. However, pre-treatment with NalBzoH (1 mg/kg, s.c.) failed to modify the effects of Ro 64-6198. Nphe(1) (10 nmol/mouse i.c.v.) and NalBzoH (1 mg/kg, s.c.) by themselves failed to affect maze performance, despite a tendency for enhanced performance. Prepro N/OFQ knockout (ppN/OFQ -/-) showed evidence of improved learning, evident at retention trials and in reversal training. ppN/OFQ -/- mice were not impaired by N/OFQ (10 nmol i.c.v.) in the task, suggesting that changes in postsynaptic NOP receptors may occur in such KO mice. It is concluded that N/OFQ and NOP receptors have an important role in hippocampus-dependent spatial learning and memory, probably by modulation of glutamatergic functions.


Neuropharmacology | 2008

Blockade of 5-HT 1B receptors facilitates contextual aversive learning in mice by disinhibition of cholinergic and glutamatergic neurotransmission

Therese M. Eriksson; Nather Madjid; E. Elvander-Tottie; Oliver Stiedl; Per Svenningsson; Sven Ove Ögren

Serotonergic (5-HT) neurotransmission plays a role in learning and memory processes, but the physiological role of various receptor subtypes is not well characterised. Among these, 5-HT(1B) receptors are located as autoreceptors on 5-HT axons and heteroreceptors on non-serotonergic terminals. This study examined the role of the 5-HT(1B) receptor in one-trial aversive contextual learning using the passive avoidance (PA) task in NMRI mice. Subcutaneous administration of the 5-HT(1B) receptor agonist anpirtoline (0.1-1.0mg/kg) before PA training impaired retention performance 24h later. Combined administration of anpirtoline with the selective 5-HT(1B) receptor antagonist NAS-181 (0.1-1.0mg/kg) fully blocked the impairments. Administration of NAS-181 alone dose-dependently improved PA retention performance. This facilitatory effect was blocked by subthreshold doses of both the muscarinic antagonist scopolamine (0.03 mg/kg) and the NMDA receptor antagonist MK-801 (0.03 mg/kg). NAS-181 also fully blocked the PA impairments induced by an amnesic dose of scopolamine (0.1mg/kg), when administered prior to, but not after, scopolamine. In addition, NAS-181 attenuated PA impairments induced by MK-801 (0.3mg/kg). These findings indicate that 5-HT(1B) receptors are activated at basal levels of 5-HT transmission. The facilitatory effect of NAS-181 involved alleviation of an inhibitory 5-HT tone mediated via 5-HT(1B) receptors on cholinergic and glutamatergic transmission. This disinhibition is expected to occur in neuronal circuits involved in contextual learning including the hippocampus and interconnected cortico-limbic regions. Blockade of brain 5-HT(1B) heteroreceptors may represent a novel therapeutic strategy for restoration of deficient cholinergic and glutamatergic neurotransmission contributing to memory disorders.


The International Journal of Neuropsychopharmacology | 2015

Involvement of the Striatal Medium Spiny Neurons of the Direct Pathway in the Motor Stimulant Effects of Phencyclidine

Alessandra Bonito-Oliva; Caitlin M. DuPont; Nather Madjid; Sven Ove Ögren; Gilberto Fisone

Background: The psychotomimetic phencyclidine (PCP) produces behavioral symptoms similar to those observed in schizophrenia, accompanied by increased motor activity. The dopamine and adenosine 3’,5’-cyclic monophosphate-regulated phosphoprotein of 32kDa (DARPP-32) is enriched in the medium spiny neurons (MSNs) of the striatum and has been implicated in the actions of PCP. We examined the effects of deletion of DARPP-32 in distinct populations of striatal MSNs, on the ability of PCP to induce motor activation and memory deficit. Methods: The effects of PCP were examined in mice with conditional knockout of DARPP-32 in the MSNs of the direct, or indirect pathway. DARPP-32 phosphorylation was determined by Western blotting. The motor stimulant effects of PCP were determined by measuring locomotion following acute and chronic administration. Memory deficit was evaluated using the passive avoidance test. Results: Loss of DARPP-32 in direct MSNs prevents PCP-induced phosphorylation and abolishes the motor stimulation effects of PCP. In contrast, lack of DARPP-32 in indirect MSNs does not affect the ability of PCP to promote DARPP-32 phosphorylation and to increase motor activity. The impairment in passive avoidance induced by PCP is independent of the expression of DARPP-32 in direct or indirect MSNs. Conclusions: The increase in DARPP-32 phosphorylation induced by PCP occurs selectively in the MSNs of the direct pathway, which are also specifically involved in the motor stimulant effects of this drug. The memory deficit induced by PCP is not linked to the expression of DARPP-32 in striatal MSNs.


European Neuropsychopharmacology | 2015

Analysis of mechanisms for memory enhancement using novel and potent 5-HT1A receptor ligands

Valeria Pittalà; Maria A. Siracusa; Loredana Salerno; Giuseppe Romeo; Maria N. Modica; Nather Madjid; Sven Ove Ögren

In light of the involvement of serotonergic 5-HT1A receptors in the mediation of the memory of aversive events, the potent and selective 5-HT1A receptor antagonists, MC18 fumarate and VP08/34 fumarate, were tested in the passive avoidance task (PA), a rodent model of instrumental conditioning. Either alone or in combination with the prototypical agonist 8-OH-DPAT, MC18 fumarate at doses (0.1, 0.3 and 1mg/kg given 15min prior to training) exerted a dose-dependent facilitation of PA memory retention. When administered 15min prior to 8-OH-DPAT (0.3 and 1mg/kg), MC18 fumarate at a dose of 0.3mg/kg, enhanced significantly the impairment of PA retention caused by 8-OH-DPAT (1mg/kg). However, VP08/34 fumarate given at the same doses exerted no statistically effect on PA retention memory. Furthermore, VP08/34 fumarate given 15min prior to 8-OH-DPAT (0.3 and 1mg/kg) only slightly enhanced the PA impairment induced by 8-OH-DPAT. In conclusion, the profile of MC18 fumarate is intriguing since it behaves in a manner which differs from both full receptor antagonists such as NAD-299 or partial receptor agonists. The results also illustrate the importance of subtle receptor interaction and probably ligand efficacy in determining the actions of two almost identical 5-HT1A receptor ligands in cognitive function such as instrumental learning.


European Neuropsychopharmacology | 2017

Nociceptin and the NOP receptor in aversive learning in mice

Abdu Adem; Nather Madjid; Ulrika Kahl; Sarah Holst; Bassem Sadek; Johan Sandin; Lars Terenius; Sven Ove Ögren

The endogenous neuropeptide nociceptin (N/OFQ), which mediates its actions via the nociceptin receptor (NOP), is implicated in multiple behavioural and physiological functions. This study examined the effects of the NOP agonists N/OFQ and the synthetic agonist Ro 64-6198, the antagonists NNN and NalBzoH, as well as deletion of the Pronociceptin gene on emotional memory in mice. The animals were tested in the passive avoidance (PA) task, dependent on hippocampal and amygdala functions. N/OFQ injected intraventricularly (i.c.v.) prior to training produced a biphasic effect on PA retention; facilitation at a low dose and impairment at higher doses. Ro 64-6198 also displayed a biphasic effect with memory facilitation at lower doses and impairment at a high dose. None of the agonists influenced PA training latencies. NNN did not significantly modulate retention in the PA task but antagonized the inhibitory effects of N/OFQ. NalBzoH facilitated memory retention in a dose-dependent manner and blocked the impairing effects of N/OFQ. However, neither NNN nor NalBzoH blocked the memory-impairing effects of Ro 64-6198. Finally, the Pnoc knockout mice exhibited enhanced PA retention latencies compared to the wild type mice. The biphasic effect of the natural ligand and Ro 64-6198 and the failure of the antagonists to block the action of Ro 64-6198 indicate complexity in ligand-receptor interaction. These results indicate that brain nociceptin and its NOP has a subtle role in regulation of mechanisms of relevance for treatment of disorders with processing disturbances of aversive events e.g. Alzheimers disease, anxiety, depression and PTSD.


Journal of Pharmacology and Experimental Therapeutics | 2005

5-Hydroxytryptamine 1A Receptor Blockade Facilitates Aversive Learning in Mice: Interactions with Cholinergic and Glutamatergic Mechanisms

Nather Madjid; Elin Elvander Tottie; Maria Lüttgen; Björn Meister; Johan Sandin; Alexander Kuzmin; Oliver Stiedl; Sven Ove Ögren


Molecular Brain Research | 2004

Down-regulated expression of agouti-related protein (AGRP) mRNA in the hypothalamic arcuate nucleus of hyperphagic and obese tub/tub mice

M Bäckberg; Nather Madjid; Sven Ove Ögren; Björn Meister

Collaboration


Dive into the Nather Madjid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge