Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natik Piri is active.

Publication


Featured researches published by Natik Piri.


Investigative Ophthalmology & Visual Science | 2010

RNA binding protein with multiple splicing: a new marker for retinal ganglion cells.

Jacky M. K. Kwong; Joseph Caprioli; Natik Piri

PURPOSE To characterize expression of the RNA binding protein (RBPMS) in the retina as a specific marker for retinal ganglion cells (RGCs). METHODS Optic nerve transection (ONT) was performed on adult male Wistar rats. Retrograde RGC labeling was performed with FluoroGold (FG) applied to the cut surface of the optic nerve. RBPMS mRNA and protein expression in the retina was analyzed by in situ hybridization and immunohistochemistry, respectively. The expression of RBPMS in various rat tissues was analyzed with semiquantitative RT-PCR. RESULTS RBPMS mRNA and protein expression was localized primarily to irregularly shaped cells in the ganglion cell layer of the retina. Quantitative analysis showed that almost 100% of RGCs labeled by FG were also RBPMS-positive, irrespective of their location relative to the optic nerve head. Approximately 94% to 97% of RBPMS-positive cells were also positive for Thy-1, neurofilament H, and III beta-tubulin. In 2-week ONT retinas, the remaining few RGCs were weakly stained with RBPMS compared with intact RGCs in control retinas. Outside the retina, expression of RBPMS was observed in the heart, kidney, liver, and lungs. No expression was detected in any neuronal tissues except the retina. CONCLUSIONS The data indicate that in the retina RBPMS is selectively expressed in RGCs and therefore could serve as a marker for RGC quantification in normal retinas and for estimation of RGC loss in ocular neuropathies.


Gene Therapy | 2009

Redox proteins thioredoxin 1 and thioredoxin 2 support retinal ganglion cell survival in experimental glaucoma.

Yasunari Munemasa; J. Ahn; Jacky M. K. Kwong; Joseph Caprioli; Natik Piri

We investigated the neuroprotective effect of thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2) which play critical roles in the regulation of oxidative stress on retinal ganglion cells (RGCs) in a rat glaucoma model. Expression of Trx1 and Trx2 and Trx-interacting protein (Txnip) was observed in the RGC layer (GCL), nerve fiber layer and inner nuclear layer. Txnip-, Trx1- and Trx2-expressing cells in the GCL were primarily colocalized with RGCs. The increased Txnip protein level was observed 2 and 5 weeks after glaucoma induction. Trx1 level decreased 2 weeks after glaucoma induction and more prominently after 5 weeks. No change in Trx2 levels was detected. The effects of Trx1 and Trx2 overexpression on RGC survival were evaluated 5 weeks after glaucoma induction. In nontransfected and EGFP-transfected (used as a negative control) retinas, RGC loss was approximately 27% compared with control. The loss of RGCs in Trx1- and Trx2- transfected retinas was approximately 15 and 17%, respectively. Thus, Trx1 and Trx2 preserved 45 and 37% of cells, respectively that were destined to die in glaucomatous retinas. The results of this study provide evidence for the involvement of oxidative stress in RGC degeneration in experimental glaucoma and point to potential strategies to reduce its impact.


Brain Research | 2007

Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration

Natik Piri; M. Song; Jacky M. K. Kwong; Joseph Caprioli

The expression of alpha (alphaA and alphaB) and beta (betaA1/A3, betaA2, betaA4, and betaB2) crystallin genes were analyzed at the mRNA and protein levels in rat retinas with ocular hypertension-induced ganglion cell death. An animal model with progressive loss of retinal ganglion cells (RGC) was generated by elevation of intraocular pressure (IOP). The estimated RGC loss was approximately 8% and 20% at 2 and 5 weeks post IOP elevation, respectively. mRNA and protein quantification showed that alpha and beta crystallin genes were downregulated at both transcriptional (alphaA, alphaB, betaA1/A3, betaA4, and betaB2 approximately 50% and betaA2~40%) and protein (alphaA~50%, alphaB~63%, betaA1/A3~70%, and betaB2~38%) levels 2 weeks after IOP elevation. In experimental retinas 5 weeks after IOP elevation, the levels of crystallin mRNAs were higher than at 2 weeks and were comparable to that of control retinas. However, the levels of the corresponding proteins were still lower (alphaA, alphaB, and betaB2 approximately 37% and betaA1/A3~70%) than in control retinas. Furthermore, we found that the expression of these genes in the retina is predominantly localized to the cells in the GCL and to a lesser degree in the INL and ONL. Colocalization of the crystallin-positive and Fluorogold retrogradely labeled cells indicated that the cells expressing alpha and beta crystallins in the GCL are RGCs. In summary, we showed that alpha and beta crystallins are expressed in the retina predominantly by RGCs and that their expression is affected by ocular hypertension.


Journal of Neuroscience Research | 2008

Activation of autophagy in retinal ganglion cells

Seok Hwan Kim; Yasunari Munemasa; Jacky M. K. Kwong; J. Ahn; Sergey Mareninov; Lynn K. Gordon; Joseph Caprioli; Natik Piri

Autophagy has been shown to be activated in neuronal cells in response to injury and suggested to have a cell‐protective role in neurodegenerative diseases. In this study, we investigated the activation of autophagy in retinal ganglion cells (RGCs) following optic nerve transection (ONT) and evaluated its effect on RGC survival. Expression of several autophagy‐related genes, including Atg5, Atg7, and Atg12, and autophagy markers microtubule‐associated protein 1 light chain 3–II (LC3‐II) and beclin‐1 were analyzed at the transcriptional or protein level 1, 3, and 7 days after ONT. Transcription of the Atg5, Atg7, and Atg12 genes was up‐regulated 1.5‐ to 1.8‐fold in the retina 3 days after ONT compared with that in the controls. Expression of Atg12 mRNA was increased 1.6‐fold 1 day after ONT. Seven days after ONT, expression of Atg5, Atg7, and Atg12 mRNA was comparable to that in the untreated retinas. Western blot analysis of proteins isolated from RGCs showed 1.6‐, 2.7‐, and 1.7‐fold increases in LC3‐II level 1, 3, and 7 days after ONT, respectively, compared with those in the controls. Expression of beclin‐1 was 1.7‐fold higher 1 day after RGCs were axotomized, but 3 and 7 days after ONT it was comparable to that of the control. Inhibition of autophagy with bafilomycin A1, 3‐methyladenine, and Wortmannin in RGC‐5 cells under serum‐deprived conditions decreased cell viability by approximately 40%. These results suggest possible activation of autophagy in RGCs after optic nerve transection and demonstrate its protective role in RGC‐5 cells maintained under conditions of serum deprivation.


Investigative Ophthalmology & Visual Science | 2008

Protective effect of thioredoxins 1 and 2 in retinal ganglion cells after optic nerve transection and oxidative stress.

Yasunari Munemasa; Seok Hwan Kim; J. Ahn; Jacky M. K. Kwong; Joseph Caprioli; Natik Piri

PURPOSE Oxidative stress has been implicated in retinal ganglion cell (RGC) death pathways after optic nerve transection (ONT) and during glaucomatous neuropathy. The authors investigated the expression and cell-protective roles of thioredoxins (cytosolic Trx1 and mitochondrial Trx2), important regulators of the cellular redox state, on RGCs after ONT and pharmacologic oxidative stress induction. METHODS ONT was performed on adult Wistar rats. Trx1 and Trx2 quantitative and spatial expression were examined with Western blot and immunohistochemistry, respectively. Electroporation and calcium phosphate-mediated procedures were used to deliver Trx1 and Trx2 expression constructs to RGCs in vivo and to cultured RGC-5 cells, respectively. Cell-protective effects of Trx1 and Trx2 overexpression on RGCs after ONT and on RGC-5 cells treated with glutamate/buthionine sulfoximine (BSO) were determined by RGC density analysis and cell viability assay, respectively. RESULTS Upregulation of Trx1 and Trx2 was observed in RGCs at different times after ONT and in RGC-5 cells after glutamate/BSO treatment. Trx1 and Trx2 overexpression in RGC-5 cells increased their survival rate by approximately twofold and threefold 24 and 48 hours after glutamate/BSO treatment, respectively. A neuroprotective effect of Trx1 and Trx2 overexpression on RGCs was also observed in vivo; the survival rate of RGCs was increased by 35% and 135%, respectively, 1 and 2 weeks after ONT. CONCLUSIONS These findings provide evidence for in vitro and in vivo cell-protective effects of Trx1 and Trx2 on RGCs against oxidative stress-induced neurodegeneration.


Investigative Ophthalmology & Visual Science | 2009

The Role of αA- and αB-Crystallins in the Survival of Retinal Ganglion Cells after Optic Nerve Axotomy

Yasunari Munemasa; Jacky M. K. Kwong; Joseph Caprioli; Natik Piri

PURPOSE Stress-induced crystallin expression is commonly viewed as activation of the cell survival mechanism. The authors analyzed the expression of alphaA- and alphaB-crystallins in a rat optic nerve transection (ONT) model characterized by specific retinal ganglion cell (RGC) degeneration and determined their role in RGC survival. METHODS ONT was performed on adult Wistar rats. Quantitative and spatial expression were examined with Western blot analysis and immunohistochemistry, respectively. Electroporation was used to deliver alphaA and alphaB expression constructs to RGCs. Cell-protective effects of alphaA and alphaB overexpression after ONT were determined by RGC density analysis. RESULTS Expression of alphaA and alphaB in the retina was observed predominantly in the ganglion cell layer, where most crystallin-positive cells were colocalized with RGCs. Levels of alphaA and alphaB proteins after ONT were decreased 1.6-fold. The effect of alphaA and alphaB overexpression on RGC survival was evaluated 7 and 14 days after axotomy. At day 7 after ONT, 1426 +/- 70 and 1418 +/- 81 RGCs/mm(2) were present in retinas electroporated with alphaA and alphaB expression constructs, respectively, compared with 1010 +/- 121 RGCs/mm(2) in sham-transfected or 1016 +/- 88 RGCs/mm(2) in nontransfected retinas. Numbers of surviving RGCs at 14 days were 389 +/- 57 and 353.57 +/- 60 cells/mm(2) after alphaA and alphaB transfection, respectively, compared with 198 +/- 29 cells/mm(2) after transfection with the vector alone or 206 +/- 60 cells/mm(2) in nontransfected retinas. CONCLUSIONS Increases of approximately 95% and 75% in RGC survival mediated by alphaA and alphaB overexpression, respectively, were observed 14 days after ONT. At day 7, the RGC protective effect of alphaA and alphaB overexpression was approximately 40%.


Journal of Biological Chemistry | 2011

Severe Neurologic Impairment in Mice with Targeted Disruption of the Electrogenic Sodium Bicarbonate Cotransporter NBCe2 (Slc4a5 Gene)

Liyo Kao; Lisa Kurtz; Xuesi M. Shao; Marios C. Papadopoulos; Li Liu; Dean Bok; Steven Nusinowitz; Bryan Chen; Salvatore L. Stella; Mark Andre; Josh Weinreb; Serena S Luong; Natik Piri; Jacky M. K. Kwong; Debra K. Newman; Ira Kurtz

The choroid plexus lining the four ventricles in the brain is where the majority of cerebrospinal fluid (CSF) is produced. The secretory function of the choroid plexus is mediated by specific transport systems that allow the directional flux of nutrients and ions into the CSF and the removal of toxins. Normal CSF dynamics and chemistry ensure that the environment for neural function is optimal. Here, we report that targeted disruption of the Slc4a5 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe2 results in significant remodeling of choroid plexus epithelial cells, including abnormal mitochondrial distribution, cytoskeletal protein expression, and ion transporter polarity. These changes are accompanied by very significant abnormalities in intracerebral ventricle volume, intracranial pressure, and CSF electrolyte levels. The Slc4a5−/− mice are significantly more resistant to induction of seizure behavior than wild-type controls. In the retina of Slc4a5−/− mice, loss of photoreceptors, ganglion cells, and retinal detachment results in visual impairment assessed by abnormal electroretinogram waveforms. Our findings are the first demonstration of the fundamental importance of NBCe2 in the biology of the nervous system.


Investigative Ophthalmology & Visual Science | 2011

Quantitative Analysis of Retinal Ganglion Cell Survival with Rbpms Immunolabeling in Animal Models of Optic Neuropathies

Jacky M. K. Kwong; Ann Quan; Haksu Kyung; Natik Piri; Joseph Caprioli

PURPOSE To investigate whether a recently described retinal ganglion cell (RGC) marker Rbpms (RNA binding protein with multiple splicing) could be used for RGC quantification in various models of RGC degeneration. METHODS Optic nerve crush, excitotoxicity, and elevated intraocular pressure (IOP) rat models were used. Topographic analysis of Rbpms immunolabeling was performed on retinal wholemounts. Retrograde labelings with Fluorogold (FG) and III β-tubulin immunohistochemistry were compared. RESULTS In the optic nerve crush model, 37%, 87%, and 93% of Rbpms-positive cells were lost 1, 2, and 4 weeks, respectively. Significant loss of Rbpms-positive cells was noted 1 week after intravitreal injection of 12, 30, and 120 nmol N-methyl-d-aspartate (NMDA), whereas coinjection of 120 nmol of NMDA along with MK-801 increased the cell number from 10% to 59%. Over 95% of Rbpms-positive cells were FG- and III β-tubulin-positive after injury caused by optic nerve crush and NMDA injection. In rats with elevated IOP, induced by trabecular laser photocoagulation, there was a significant loss of Rbpms-positive cells compared with that of contralateral controls (P = 0.0004), and cumulative IOP elevation showed a strong linear relationship with the quantification of RGCs by Rbpms immunolabeling and retrograde labeling with FG. More than 99% of the remaining Rbpms-positive cells were double-labeled with FG. CONCLUSIONS Rbpms can reliably be used as an RGC marker for quantitative evaluation in rat models of RGC degeneration, regardless of the nature and the location of the primary site of the injury and the extent of neurodegeneration.


Experimental Eye Research | 2008

Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration

Eric H. Souied; Silvia N.M. Reid; Natik Piri; Leonid E. Lerner; Steven Nusinowitz; Debora B. Farber

Despite extensive research on many of the genes responsible for inherited retinal degenerations leading to blindness, no effective treatment is currently available for patients affected with these diseases. Among the therapeutic approaches tested on animal models of human retinal degeneration, gene therapy using different types of viral vectors as delivery agents has yielded promising results. We report here our results on a non-invasive, non-viral delivery approach using transscleral iontophoresis for transfer of plasmid DNA into mouse retina. Proof of principle experiments were carried out using plasmid containing GFP cDNA to demonstrate expression of the transferred gene in the retina after single applications of iontophoresis. Various parameters for multiple applications of iontophoresis were optimized to sustain GFP gene expression in mouse photoreceptors. Subsequently, repeated iontophoresis of plasmid containing normal cGMP-phosphodiesterase beta-subunit (beta-PDE) cDNA was performed in the rd1 mouse, an animal model of autosomal recessive retinitis pigmentosa caused by a mutant beta-PDE gene. In normal mice, transscleral iontophoresis of the GFP plasmid provided a significant increase in fluorescence of the retina in the treated versus non-treated eyes. In rd1 mice, repeated iontophoresis of beta-PDE cDNA plasmid partially rescued photoreceptors morphologically, as observed by microscopy, and functionally, as recorded on ERG measurements, without adverse effects. Therefore, transscleral iontophoresis of plasmid DNA containing therapeutic genes may be an efficient, safe and non-invasive method for the treatment of retinal degenerations.


PLOS ONE | 2012

The Neuronal EGF-Related Gene Nell2 Interacts with Macf1 and Supports Survival of Retinal Ganglion Cells after Optic Nerve Injury

Yasunari Munemasa; Chang-Sheng Chang; Jacky M. K. Kwong; Haksu Kyung; Yasushi Kitaoka; Joseph Caprioli; Natik Piri

Nell2 is a neuron-specific protein containing six epidermal growth factor-like domains. We have identified Nell2 as a retinal ganglion cell (RGC)-expressed gene by comparing mRNA profiles of control and RGC-deficient rat retinas. The aim of this study was to analyze Nell2 expression in wild-type and optic nerve axotomized retinas and evaluate its potential role in RGCs. Nell2-positive in situ and immunohistochemical signals were localized to irregularly shaped cells in the ganglion cell layer (GCL) and colocalized with retrogradely-labeled RGCs. No Nell2-positive cells were detected in 2 weeks optic nerve transected (ONT) retinas characterized with approximately 90% RGC loss. RT-PCR analysis showed a dramatic decrease in the Nell2 mRNA level after ONT compared to the controls. Immunoblot analysis of the Nell2 expression in the retina revealed the presence of two proteins with approximate MW of 140 and 90 kDa representing glycosylated and non-glycosylated Nell2, respectively. Both products were almost undetectable in retinal protein extracts two weeks after ONT. Proteome analysis of Nell2-interacting proteins carried out with MALDI-TOF MS (MS) identified microtubule-actin crosslinking factor 1 (Macf1), known to be critical in CNS development. Strong Macf1 expression was observed in the inner plexiform layer and GCL where it was colocalizied with Thy-1 staining. Since Nell2 has been reported to increase neuronal survival of the hippocampus and cerebral cortex, we evaluated the effect of Nell2 overexpression on RGC survival. RGCs in the nasal retina were consistently more efficiently transfected than in other areas (49% vs. 13%; n = 5, p<0.05). In non-transfected or pEGFP-transfected ONT retinas, the loss of RGCs was approximately 90% compared to the untreated control. In the nasal region, Nell2 transfection led to the preservation of approximately 58% more cells damaged by axotomy compared to non-transfected (n = 5, p<0.01) or pEGFP-transfected controls (n = 5, p<0.01).

Collaboration


Dive into the Natik Piri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasunari Munemasa

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Haksu Kyung

Jules Stein Eye Institute

View shared research outputs
Top Co-Authors

Avatar

Lei Gu

University of California

View shared research outputs
Top Co-Authors

Avatar

M. Song

Jules Stein Eye Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seok Hwan Kim

Jules Stein Eye Institute

View shared research outputs
Top Co-Authors

Avatar

J. Ahn

Jules Stein Eye Institute

View shared research outputs
Top Co-Authors

Avatar

Fei Yu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge