Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natini Jinawath is active.

Publication


Featured researches published by Natini Jinawath.


Cancer Research | 2009

Analysis of DNA Copy Number Alterations in Ovarian Serous Tumors Identifies New Molecular Genetic Changes in Low-Grade and High-Grade Carcinomas

Kuan-Ting Kuo; Bin Guan; Yuanjian Feng; Tsui Lien Mao; Xu Chen; Natini Jinawath; Yue Wang; Robert J. Kurman; Ie Ming Shih; Tian Li Wang

Ovarian serous carcinoma, the most common and lethal type of ovarian cancer, is thought to develop from two distinct molecular pathways. High-grade (HG) serous carcinomas contain frequent TP53 mutations, whereas low-grade (LG) carcinomas arise from serous borderline tumors (SBT) and harbor mutations in KRAS/BRAF/ERBB2 pathway. However, the molecular alterations involved in the progression from SBT to LG carcinoma remain unknown. In addition, the extent of deletion of tumor suppressors in ovarian serous carcinomas has not been well studied. To further address these two issues, we assessed DNA copy number changes among affinity-purified tumor cells from 37 ovarian serous neoplasms including SBT, LG, and HG tumors using high-density 250K single nucleotide polymorphism arrays. Chromosomal instability index as measured by changes in DNA copy number was significantly higher in HG than in LG serous carcinomas. Hemizygous ch1p36 deletion was common in LG serous carcinomas but was rarely seen in SBT. This region contains several candidate tumor suppressors including miR-34a. In contrast, in HG serous carcinomas, significant numbers of amplifications and deletions, including homozygous deletions, were identified. Among homozygous deletions, loci containing Rb1, CDKN2A/B, CSMD1, and DOCK4 were most common, being present in 10.6%, 6.4%, 6.4%, and 4.3%, respectively, in independent 47 affinity-purified HG serous carcinomas. Except for the CDKN2A/B region, these homozygous deletions were not present in either SBT or LG tumors. Our study provides a genome-wide homozygous deletion profile in HG serous carcinomas, which can serve as a molecular foundation to study tumor suppressors in ovarian cancer.


Cancer Research | 2009

Functional Genomic Analysis Identified Epidermal Growth Factor Receptor Activation as the Most Common Genetic Event in Oral Squamous Cell Carcinoma

Jim Jinn Chyuan Sheu; Chun Hung Hua; Lei Wan; Ying Ju Lin; Ming Tsung Lai; Hsien Chang Tseng; Natini Jinawath; Ming Hsui Tsai; Nai Wen Chang; Chin Fen Lin; Chyi-Chyang Lin; Lie Jiau Hsieh; Tian Li Wang; Ie Ming Shih; Fuu Jen Tsai

A 250K single-nucleotide polymorphism array was used to study subchromosomal alterations in oral squamous cell carcinoma (OSCC). The most frequent amplification was found at 7p11.2 in 9 of 29 (31%) oral cancer patients. Minimal genomic mapping verified a unique amplicon spanning from 54.6 to 55.3 Mb on chromosome 7, which contains SEC61G and epidermal growth factor receptor (EGFR). Results from fluorescence in situ hybridization, transcriptome, and immunohistochemistry analyses indicated that the expression level of EGFR, but not of SEC61G, was up-regulated and tightly correlated with DNA copy number in 7p11.2 amplified tumors. Among the members of the erbB family, EGFR (HER1) was found to be the most frequently amplified and highly expressed gene in both human and mouse oral tumors (P < 0.01). Genes for downstream effectors of EGFR, including KRAS, mitogen-activated protein kinase 1, and CCND1, were also found amplified or mutated, which resulted in activation of EGFR signaling in 55% of OSCC patients. Head and neck squamous cancer cells with different EGFR expression levels showed differential sensitivity to antitumor effects of AG1478, a potent EGFR inhibitor. AG1478-induced EGFR inactivation significantly suppressed tumor development and progression in a mouse oral cancer model. Our data suggest that EGFR signaling is important in oral cancer development and that anti-EGFR therapy would benefit patients who carry the 7p11.2 amplicon in their tumors.


International Journal of Cancer | 2007

Amplicon profiles in ovarian serous carcinomas.

Kentaro Nakayama; Naomi Nakayama; Natini Jinawath; Ritu Salani; Robert J. Kurman; Ie Ming Shih; Tian Li Wang

Ovarian serous carcinoma is the most common and lethal type of ovarian cancer and its molecular etiology remains poorly understood. As an ongoing effort to elucidate the pathogenesis of ovarian serous carcinomas, we assessed the DNA copy number changes in 33 high‐grade serous carcinomas and 10 low‐grade serous tumors by using a genome‐wide technique, single nucleotide polymorphism array, performed on affinity‐purified tumor cells from fresh surgical specimens. Compared to low‐grade tumors, high‐grade serous carcinomas showed widespread DNA copy number changes. The most frequent alterations were in loci harboring candidate oncogenes: cyclin E1 (CCNE1), AKT2, Notch3 and PIK3CA as well as in novel loci, including 12p13, 8q24, 12p13 and 12q15. Seven amplicons were selected for dual color fluorescence in situ hybridization analysis in ∼90 high‐grade serous carcinomas and 26 low‐grade serous tumors, and a high level of DNA copy number gain (amplification) was found in CCNE1, Notch3, HBXAP/Rsf‐1, AKT2, PIK3CA and chr12p13 occurring in 36.1%, 7.8%, 15.7%, 13.6%, 10.8% and 7.3% of high‐grade serous carcinomas. In contrast, we did not observe high level of ERBB2 amplification in any of the samples. Low‐grade tumors did not show DNA copy number gain in any of the loci, except in 2 (8%) of 24 low‐grade tumors showing low copy number gain in the Notch3 locus. Taken together, our results provide the first comprehensive analysis of DNA copy number changes in highly pure ovarian serous carcinoma. These findings may have important biological and clinical implications.


Oncogene | 2004

Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray

Natini Jinawath; Yoichi Furukawa; Suguru Hasegawa; Meihua Li; Tatsuhiko Tsunoda; Seiji Satoh; Toshiharu Yamaguchi; Hiroshi Imamura; Masatomo Inoue; Hitoshi Shiozaki; Yusuke Nakamura

Gastric cancer is the fourth leading cause of cancer-related death in the world. Two histologically distinct types of gastric carcinoma, ‘intestinal’ and ‘diffuse’, have different epidemiological and pathophysiological features that suggest different mechanisms of carcinogenesis. A number of studies have investigated intestinal-type gastric cancers at the molecular level, but little is known about mechanisms involved in the diffuse type, which has a more invasive phenotype and poorer prognosis. To clarify the mechanisms that underlie its development and/or progression, we compared the expression profiles of 20 laser-microbeam-microdissected diffuse-type gastric-cancer tissues with corresponding noncancerous mucosae by means of a cDNA microarray containing 23 040 genes. We identified 153 genes that were commonly upregulated and more than 1500 that were commonly downregulated in the tumors. We also identified a number of genes related to tumor progression. Furthermore, comparison of the expression profiles of diffuse-type with those of intestinal-type gastric cancers identified 46 genes that may represent distinct molecular signatures of each histological type. The putative signature of diffuse-type cancer exhibited altered expression of genes related to cell–matrix interaction and extracellular-matrix (ECM) components, whereas that of intestinal-type cancer represented enhancement of cell growth. These data provide insight into different mechanisms underlying gastric carcinogenesis and may also serve as a starting point for identifying novel diagnostic markers and/or therapeutic targets for diffuse-type gastric cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival

Kentaro Nakayama; Naomi Nakayama; Ben Davidson; Jim Jinn Chyuan Sheu; Natini Jinawath; Antonio Santillan; Ritu Salani; Robert E. Bristow; Patrice J. Morin; Robert J. Kurman; Tian Li Wang; Ie Ming Shih

Recent studies have suggested an oncogenic role of the BTB/POZ-domain genes in hematopoietic malignancy. The aim of this study is to identify and characterize BTB/POZ-domain genes in the development of human epithelial cancers, i.e., carcinomas. In this study, we focused on ovarian carcinoma and analyzed gene expression levels using the serial analysis of gene expression (SAGE) data in all 130 deduced BTB/POZ genes. Our analysis reveals that NAC-1 is significantly overexpressed in ovarian serous carcinomas and several other types of carcinomas. Immunohistochemistry studies in ovarian serous carcinomas demonstrate that NAC-1 is localized in discrete nuclear bodies (tentatively named NAC-1 bodies), and the levels of NAC-1 expression correlate with tumor recurrence. Furthermore, intense NAC-1 immunoreactivity in primary tumors predicts early recurrence in ovarian cancer. Both coimmunoprecipitation and double immunofluorescence staining demonstrate that NAC-1 molecules homooligomerize through the BTB/POZ domain. Induced expression of the NAC-1 mutant containing only the BTB/POZ domain disrupts NAC-1 bodies, prevents tumor formation, and promotes tumor cell apoptosis in established tumors in a mouse xenograft model. Overexpression of full-length NAC-1 enhanced tumorigenicity of ovarian surface epithelial cells and NIH 3T3 cells in athymic nu/nu mice. In summary, NAC-1 is a tumor recurrence-associated gene with oncogenic potential, and the interaction between BTB/POZ domains of NAC-1 proteins is critical to form the discrete NAC-1 nuclear bodies and essential for tumor cell proliferation and survival.


Hepatology | 2006

Comparison of gene expression profiles between Opisthorchis viverrini and non-Opisthorchis viverrini associated human intrahepatic cholangiocarcinoma.

Natini Jinawath; Yaovalux Chamgramol; Yoichi Furukawa; Kazutaka Obama; Tatsuhiko Tsunoda; Banchob Sripa; Chawalit Pairojkul; Yusuke Nakamura

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary cancer in the liver, and its incidence is highest in the northeastern part of Thailand. ICCs in this region are known to be associated with infection with liver flukes, particularly Opisthorchis viverrini (OV), as well as nitrosamines from food. To clarify molecular mechanisms of ICC associated with or without liver flukes, we analyzed gene expression profiles of OV‐associated ICCs from 20 Thai patients and compared their profiles with those of 20 Japanese ICCs that were not associated with OV, by means of laser microbeam microdissection and a cDNA microarray containing 27,648 genes. We identified 77 commonly upregulated genes and 325 commonly downregulated genes in the two ICC groups. Unsupervised hierarchical cluster analysis separated the 40 ICCs into two major branches almost completely according to the fluke status. The putative signature of OV‐associated ICC exhibited elevated expression of genes involved in xenobiotic metabolism (UGT2B11, UGT1A10, CHST4, SULT1C1), whereas that of non–OV‐associated ICC represented enhanced expression of genes related to growth factor signaling (TGFBI, PGF, IGFBP1, IGFBP3). Additional random permutation tests identified a total of 49 genes whose expression levels were significantly different between the two groups. We also identified genes associated with macroscopic type of ICCs. In conclusion, these data may not only contribute to clarification of common and OV‐specific mechanisms underlying ICC, but also may serve as a starting point for the identification of novel diagnostic markers or therapeutic targets for the disease. (HEPATOLOGY 2006;44:1025–1038.)


Cancer Research | 2009

Functional analysis of 11q13.5 amplicon identifies Rsf-1 (HBXAP) as a gene involved in paclitaxel resistance in ovarian cancer

Jung Hye Choi; Jim Jinn Chyuan Sheu; Bin Guan; Natini Jinawath; Paul Markowski; Tian Li Wang; Ie Ming Shih

The chromosome 11q13.5 locus is frequently amplified in several types of human cancer. We have previously shown that 11q13.5 amplification was associated with significantly shorter overall survival in ovarian cancer patients, but the molecular mechanisms of how amplification of this locus contributes to disease aggressiveness remain unclear. Because ovarian cancer mortality is primarily related to resistance of chemotherapeutic agents, we screened the top six candidate genes within this amplicon for their contribution to drug resistance. Rsf-1 (also known as HBXAP) was found to be the only gene in which gene knockdown sensitized tumor cells to paclitaxel. Rsf-1 has been known to interact with hSNF2H to form an ISWI chromatin remodeling complex. We found that Rsf-1 was up-regulated in paclitaxel-resistant ovarian cancer cell lines, and Rsf-1 immunoreactivity in primary ovarian carcinoma tissues correlated with in vitro paclitaxel resistance. Ectopic expression of Rsf-1 significantly enhanced paclitaxel resistance in ovarian cancer cells. Down-regulation of hSNF2H or disruption of hSNF2H and Rsf-1 interaction enhanced paclitaxel sensitivity in tumor cells with Rsf-1 up-regulation. Rsf-1 expression altered expression in several genes and activated certain signaling pathways that may contribute to drug resistance. In conclusion, our results suggest that Rsf-1 is the major gene within the 11q13.5 amplicon that contributes to paclitaxel resistance, and the formation of the Rsf-1/hSNF2H complex is required for inducing this phenotype.


Oncogene | 2009

NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway.

Natini Jinawath; Chanont Vasoontara; Kai Lee Yap; Michelle M. Thiaville; Kentaro Nakayama; Tian Li Wang; Ie Ming Shih

Nucleus accumbens-1 (Nac1 or NAC-1) belongs to the BTB/POZ (Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex) transcription factor family and is a novel protein that potentially participates in self-renewal and pluripotency in embryonic stem cells. In human cancer, NAC-1 is upregulated in several types of neoplasms, but particularly in recurrent chemoresistant ovarian carcinomas, suggesting a biological role for NAC-1 in the development of drug resistance in ovarian cancer. We have assessed this possibility and shown a correlation between NAC-1 expression and ex vivo paclitaxel resistance in ovarian serous carcinoma tissues and cell lines. We found that expression of Gadd45-γ-interacting protein 1 (Gadd45gip1), a downstream target negatively regulated by NAC-1, was reduced in paclitaxel-resistant cells. Ectopic expression of NAC-1 or knockdown of Gadd45gip1 conferred paclitaxel resistance, whereas NAC-1 knockdown or ectopic expression of Gadd45gip1 increased paclitaxel sensitivity. Furthermore, silencing NAC-1 expression or disrupting NAC-1 homodimerization by a dominant negative NAC-1 protein that contained only the BTB/POZ domain induced the expression of Gadd45γ, which interacted with Gadd45gip1. Reducing Gadd45γ expression by small hairpin RNAs partially enhanced paclitaxel resistance. Thus, this study provides new evidence that NAC-1 upregulation and homodimerization contribute to tumor recurrence by equipping ovarian cancer cells with the paclitaxel-resistant phenotype through negative regulation of the Gadd45 pathway.


PLOS ONE | 2010

Oncoproteomic Analysis Reveals Co-Upregulation of RELA and STAT5 in Carboplatin Resistant Ovarian Carcinoma

Natini Jinawath; Chanont Vasoontara; Artit Jinawath; Xueping Fang; Kejia Zhao; Kai Lee Yap; Tong Guo; Cheng S. Lee; Weijie Wang; Brian M. Balgley; Ben Davidson; Tian Li Wang; Ie Ming Shih

Background Ovarian cancer is one of the most lethal types of female malignancy. Although most patients are initially responsive to platinum-based chemotherapy, almost all develop recurrent chemoresistant tumors and succumb to their diseases. Elucidating the pathogenesis underlying drug resistance is fundamental to the development of new therapeutics, leading to improved clinical outcomes in these patients. Methods and Findings We compared the proteomes of paired primary and recurrent post-chemotherapy ovarian high-grade serous carcinomas from nine ovarian cancer patients using CIEF/Nano-RPLC coupled with ESI-Tandem MS. As compared to their primary tumors, more than half of the recurrent tumors expressed higher levels of several proteins including CP, FN1, SYK, CD97, AIF1, WNK1, SERPINA3, APOD, URP2, STAT5B and RELA (NF-κB p65), which were also validated by quantitative RT-PCR. Based on shRNA screening for the upregulated genes in in vitro carboplatin-resistant cells, we found that simultaneous knockdown of RELA and STAT5B was most effective in sensitizing tumor cells for carboplatin treatment. Similarly, the NF-κB inhibitor, BMS-345541, and the STAT5 inhibitor, Dasatinib, significantly enhanced cell sensitivity to carboplatin. Moreover, both RELA and STAT5 are known to bind to the promoter region of Bcl-X, regulating its promoter activity. In this regard, augmented Bcl-xL expression was detected in carboplatin-resistant cells. Combined ectopic expression of RELA and STAT5B enhanced Bcl-xL promoter activity while treatment with BMS-345541 and Dasatinib decreased it. Chromatin immunoprecipitation of the Bcl-X promoter region using a STAT5 antibody showed induction of RELA and STAT5 DNA-binding segments both in naïve cells treated with a high concentration of carboplatin as well as in carboplatin-resistant cells. Conclusions Proteomic analysis identified RELA and STAT5 as two major proteins associated with carboplatin resistance in ovarian tumors. Our results further showed that NF-κB and STAT5 inhibitor could sensitize carboplatin-resistant cells and suggest that such inhibitors can be used to benefit patients with carboplatin-resistant recurrent ovarian cancer.


The Journal of Molecular Diagnostics | 2009

A rare e14a3 (b3a3) BCR-ABL fusion transcript in chronic myeloid leukemia: diagnostic challenges in clinical laboratory practice.

Natini Jinawath; Alexis Norris-Kirby; B. Douglas Smith; Christopher D. Gocke; Denise Batista; Constance A. Griffin; Kathleen M. Murphy

Patients with chronic myelogenous leukemia have a t(9;22)(q34;q11.2) or variant translocation that results in a BCR-ABL fusion gene. BCR-ABL detection by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) is the standard practice for monitoring residual disease in patients with chronic myelogenous leukemia who receive tyrosine kinase inhibitor therapies. In this study, we describe a patient who tested positive for the BCR-ABL translocation by fluorescence in situ hybridization and cytogenetic analysis but tested negative by qRT-PCR molecular analysis at the time of diagnosis. Further PCR analysis and DNA sequencing with alternative primer sets demonstrated the presence of an e14a3 (also known as b3a3) BCR-ABL fusion. The e14a3 fusion is rare, but may be underreported as a result of many commercially available and laboratory-developed primer sets that fail to detect breakpoints in the ABL gene that are downstream of intron 1. For this patient, if the qRT-PCR assay had been used to monitor disease response/progression after treatment and not in conjunction with fluorescence in situ hybridization or cytogenetics at the time of diagnosis, the negative result would have been misinterpreted as molecular remission.

Collaboration


Dive into the Natini Jinawath's collaboration.

Top Co-Authors

Avatar

Ie Ming Shih

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Tian Li Wang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Guan

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge