Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nattaya Tangthawornchaikul is active.

Publication


Featured researches published by Nattaya Tangthawornchaikul.


Nature Medicine | 2003

Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever

Juthathip Mongkolsapaya; Wanwisa Dejnirattisai; Xiao-Ning Xu; Sirijitt Vasanawathana; Nattaya Tangthawornchaikul; Aroonrung Chairunsri; Siraporn Sawasdivorn; Thaneeya Duangchinda; Tao Dong; Sarah Rowland-Jones; Pa-thai Yenchitsomanus; Andrew J. McMichael; Prida Malasit; Gavin R. Screaton

Dengue virus presents a growing threat to public health in the developing world. Four major serotypes of dengue virus have been characterized, and epidemiological evidence shows that dengue hemorrhagic fever (DHF), the more serious manifestation of the disease, occurs more frequently upon reinfection with a second serotype. We have studied dengue virus–specific T-cell responses in Thai children. During acute infection, few dengue-responsive CD8+ T cells were recovered; most of those present showed an activated phenotype and were undergoing programmed cell death. Many dengue-specific T cells were of low affinity for the infecting virus and showed higher affinity for other, probably previously encountered strains. Profound T-cell activation and death may contribute to the systemic disturbances leading to DHF, and original antigenic sin in the T-cell responses may suppress or delay viral elimination, leading to higher viral loads and increased immunopathology.


The Journal of Infectious Diseases | 2006

Vascular Leakage in Severe Dengue Virus Infections: A Potential Role for the Nonstructural Viral Protein NS1 and Complement

Panisadee Avirutnan; Nuntaya Punyadee; Sansanee Noisakran; Chulaluk Komoltri; Somchai Thiemmeca; Kusuma Auethavornanan; Aroonroong Jairungsri; Rattiyaporn Kanlaya; Nattaya Tangthawornchaikul; Chunya Puttikhunt; Sa-nga Pattanakitsakul; Pa-thai Yenchitsomanus; Juthathip Mongkolsapaya; Watchara Kasinrerk; Nopporn Sittisombut; Matthias Husmann; Maria Blettner; Sirijitt Vasanawathana; Sucharit Bhakdi; Prida Malasit

BACKGROUND Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Thirty years ago, complement activation was proposed to be a key underlying event, but the cause of complement activation has remained unknown. METHODS The major nonstructural dengue virus (DV) protein NS1 was tested for its capacity to activate human complement in its membrane-associated and soluble forms. Plasma samples from 163 patients with DV infection and from 19 patients with other febrile illnesses were prospectively analyzed for viral load and for levels of NS1 and complement-activation products. Blood and pleural fluids from 9 patients with DSS were also analyzed. RESULTS Soluble NS1 activated complement to completion, and activation was enhanced by polyclonal and monoclonal antibodies against NS1. Complement was also activated by cell-associated NS1 in the presence of specific antibodies. Plasma levels of NS1 and terminal SC5b-9 complexes correlated with disease severity. Large amounts of NS1, complement anaphylatoxin C5a, and the terminal complement complex SC5b-9 were present in pleural fluids from patients with DSS. CONCLUSIONS Complement activation mediated by NS1 leads to local and systemic generation of anaphylatoxins and SC5b-9, which may contribute to the pathogenesis of the vascular leakage that occurs in patients with DHF/DSS.


Nature Genetics | 2005

A variant in the CD209 promoter is associated with severity of dengue disease

Anavaj Sakuntabhai; Chairat Turbpaiboon; Isabelle Casademont; Ampaiwan Chuansumrit; Tassanee Lowhnoo; Anna Kajaste-Rudnitski; Sita Mint Kalayanarooj; Kanchana Tangnararatchakit; Nattaya Tangthawornchaikul; Sirijit Vasanawathana; Wathanee Chaiyaratana; Pa-thai Yenchitsomanus; Prapat Suriyaphol; Panisadee Avirutnan; Kulkanya Chokephaibulkit; Fumihiko Matsuda; Sutee Yoksan; Yves Jacob; G. Mark Lathrop; Prida Malasit; Philippe Desprès; Cécile Julier

Dengue fever and dengue hemorrhagic fever are mosquito-borne viral diseases. Dendritic cell–specific ICAM-3 grabbing nonintegrin (DC-SIGN1, encoded by CD209), an attachment receptor of dengue virus, is essential for productive infection of dendritic cells. Here, we report strong association between a promoter variant of CD209, DCSIGN1-336, and risk of dengue fever compared with dengue hemorrhagic fever or population controls. The G allele of the variant DCSIGN1-336 was associated with strong protection against dengue fever in three independent cohorts from Thailand, with a carrier frequency of 4.7% in individuals with dengue fever compared with 22.4% in individuals with dengue hemorrhagic fever (odds ratio for risk of dengue hemorrhagic fever versus dengue fever: 5.84, P = 1.4 × 10−7) and 19.5% in controls (odds ratio for protection: 4.90, P = 2 × 10−6). This variant affects an Sp1-like binding site and transcriptional activity in vitro. These results indicate that CD209 has a crucial role in dengue pathogenesis, which discriminates between severe dengue fever and dengue hemorrhagic fever. This may have consequences for therapeutic and preventive strategies.


Journal of Immunology | 2006

T Cell Responses in Dengue Hemorrhagic Fever: Are Cross-Reactive T Cells Suboptimal?

Juthathip Mongkolsapaya; Thaneeya Duangchinda; Wanwisa Dejnirattisai; Sirijit Vasanawathana; Panisadee Avirutnan; Aroonroong Jairungsri; Nuanpan Khemnu; Nattaya Tangthawornchaikul; Pojchong Chotiyarnwong; Kanokwan Sae-Jang; Michael Koch; Yvonne Jones; Andrew J. McMichael; Xiao-Ning Xu; Prida Malasit; Gavin R. Screaton

Dengue virus infection poses a growing public health and economic burden in a number of tropical and subtropical countries. Dengue circulates as a number of quasispecies, which can be divided by serology into four groups or serotypes. An interesting feature of Dengue, recognized over five decades ago, is that most severe cases that show hemorrhagic fever are not suffering from a primary infection. Instead, they are reinfected with a virus of different serotype. This observation poses considerable problems in vaccine design, and it is therefore imperative to gain a full understanding of the mechanisms underlying this immunological enhancement of disease. In this study, we examined a T cell epitope restricted by HLA-A*24, a major MHC class I allele, in Southeast Asia in a cohort of children admitted to a hospital with acute Dengue infection. The cytokine profiles and the degranulation capacity of T cells generated to this epitope are defined and compared across different viral serotypes. Cross-reactive Dengue-specific T cells seem to show suboptimal degranulation but high cytokine production, which may contribute to the development of the vascular leak characteristic of Dengue hemorrhagic fever.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Immunodominant T-cell responses to dengue virus NS3 are associated with DHF

Thaneeya Duangchinda; Wanwisa Dejnirattisai; Sirijit Vasanawathana; Wannee Limpitikul; Nattaya Tangthawornchaikul; Prida Malasit; Juthathip Mongkolsapaya; Gavin R. Screaton

Dengue infections are increasing at an alarming rate in many tropical and subtropical countries, where epidemics can put health care systems under extreme pressure. The more severe infections lead to dengue hemorrhagic fever (DHF), which can be life threatening. A variety of viral and host factors have been associated with the severity of dengue infections. Because secondary dengue infection is more commonly associated with DHF than primary infections, the acquired immune response to dengue, both B cells and T cells have been implicated. In this study, we set out to study T-cell responses across the entire dengue virus proteome and to see whether these were related to disease severity in a cohort of dengue-infected children from Thailand. Robust responses were observed in most infected individuals against most viral proteins. Responses to NS3 were the most frequent, and there was a very strong association between the magnitude of the response and disease severity. Furthermore, in DHF, cytokine-high CD107a-negative cells predominated.


The Journal of Infectious Diseases | 2015

High Anti–Dengue Virus Activity of the OAS Gene Family Is Associated With Increased Severity of Dengue

Etienne Simon-Loriere; Ren-Jye Lin; Sita Mint Kalayanarooj; Ampaiwan Chuansumrit; Isabelle Casademont; Shyr Yi Lin; Han Pang Yu; Worachart Lert-Itthiporn; Wathanee Chaiyaratana; Nattaya Tangthawornchaikul; Kanchana Tangnararatchakit; Sirijitt Vasanawathana; Bi Lan Chang; Prapat Suriyaphol; Sutee Yoksan; Prida Malasit; Philipe Despres; Richard Paul; Yi-Ling Lin; Anavaj Sakuntabhai

Dengue is a mosquito-borne viral disease that afflicts millions of individuals worldwide every year. Infection by any of the 4 dengue virus (DENV) serotypes can result in a spectrum of disease severity. We investigated the impact of variants of interferon-regulated innate immunity genes with a potent antiviral effect on the outcome of DENV infection. We compared the effect of OAS gene family variants on 2 DENV serotypes in cell culture. While both OAS1-p42 and p46 showed antiviral activity against DENV-2, only OAS1-p42 presented anti-DENV-1 activity. Conversely, whereas both OAS3_S381 and R381 variants were able to block DENV-1 infection, the anti-DENV-2 activity observed for OAS3_S381 was largely lost for the R381 variant. By means of an allelic association study of a cohort of 740 patients with dengue, we found a protective effect of OAS3_R381 against shock (odds ratio [OR], 0.37; P < .001). This effect was due to DENV-2 infections (OR, 0.13; P = .007) but was absent for DENV-1, in accordance with the serotype-dependent OAS3 activity found in the functional study. Severe dengue has long been associated with a cytokine storm of unclear origin. This work identifies an early innate immunity process that could lead to the immune overreaction observed in severe dengue and could be triggered by a specific host genotype-pathogen genotype interaction.


PLOS Neglected Tropical Diseases | 2014

Invariant NKT Cell Response to Dengue Virus Infection in Human

Ponpan Matangkasombut; Wilawan Chan-in; Anunya Opasawaschai; Pisut Pongchaikul; Nattaya Tangthawornchaikul; Sirijitt Vasanawathana; Wannee Limpitikul; Prida Malasit; Thaneeya Duangchinda; Gavin R. Screaton; Juthathip Mongkolsapaya

Background Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection. Methods Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured. Results iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated. Conclusion iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future.


Journal of Virological Methods | 2014

Comparison of phi29-based whole genome amplification and whole transcriptome amplification in dengue virus

Patcharawan Sujayanont; Kwanrutai Chin-inmanu; Boonrat Tassaneetrithep; Nattaya Tangthawornchaikul; Prida Malasit; Prapat Suriyaphol

Dengue virus is responsible for 50-100 million new infections annually worldwide. The virus uses error-prone RNA polymerase during genome replication in a host, resulting in the formation of closely related viruses known as quasispecies. The availability of next-generation sequencing technology provides opportunities to analyze viral quasispecies. Before analysis, it is crucial to increase the amount of DNA because of the limited amounts of viral genomic material that can be isolated from a patient. However, using specific primers may overlook the occurrence of possible variations at primer binding sites. To address this problem, the performance of two sequence-independent amplification methods was compared for whole genome amplification (WGA): phi29 DNA polymerase-based WGA and whole transcriptome amplification (WTA). Both methods have the ability to provide complete coverage of the dengue genome from template amounts as low as 1 ng. However, WTA showed greater efficiency in terms of yield (WTA: ~10 μg; phi29-based WGA: ~500 ng) and lower amplification bias. In conclusion, the WTA amplification kit was shown to perform substantially better than phi29 DNA polymerase-based WGA in terms of both final concentration and amplification bias in amplifying small genomes, such as that of the dengue virus.


Clinical and Experimental Immunology | 2013

Complement alternative pathway genetic variation and Dengue infection in the Thai population.

Romchat Kraivong; Sirijitt Vasanawathana; Wannee Limpitikul; Prida Malasit; Nattaya Tangthawornchaikul; Marina Botto; Gavin R. Screaton; Juthathip Mongkolsapaya; Matthew C. Pickering

Dengue disease is a mosquito‐borne infection caused by Dengue virus. Infection may be asymptomatic or variably manifest as mild Dengue fever (DF) to the most severe form, Dengue haemorrhagic fever (DHF). Mechanisms that influence disease severity are not understood. Complement, an integral component of the immune system, is activated during Dengue infection and the degree of activation increases with disease severity. Activation of the complement alternative pathway is influenced by polymorphisms within activation (factor B rs12614/rs641153, C3 rs2230199) and regulatory [complement factor H (CFH) rs800292] proteins, collectively termed a complotype. Here, we tested the hypothesis that the complotype influences disease severity during secondary Dengue infection. In addition to the complotype, we also assessed two other disease‐associated CFH polymorphisms (rs1061170, rs3753394) and a structural polymorphism within the CFH protein family. We did not detect any significant association between the examined polymorphisms and Dengue infection severity in the Thai population. However, the minor allele frequencies of the factor B and C3 polymorphisms were less than 10%, so our study was not sufficiently powered to detect an association at these loci. We were also unable to detect a direct interaction between CFH and Dengue NS1 using both recombinant NS1 and DV2‐infected culture supernatants. We conclude that the complotype does not influence secondary Dengue infection severity in the Thai population.


BMC Medical Genetics | 2018

Validation of genotype imputation in Southeast Asian populations and the effect of single nucleotide polymorphism annotation on imputation outcome

Worachart Lert-itthiporn; Bhoom Suktitipat; Harald Grove; Anavaj Sakuntabhai; Prida Malasit; Nattaya Tangthawornchaikul; Fumihiko Matsuda; Prapat Suriyaphol

BackgroundImputation involves the inference of untyped single nucleotide polymorphisms (SNPs) in genome-wide association studies. The haplotypic reference of choice for imputation in Southeast Asian populations is unclear. Moreover, the influence of SNP annotation on imputation results has not been examined.MethodsThis study was divided into two parts. In the first part, we applied imputation to genotyped SNPs from Southeast Asian populations from the Pan-Asian SNP database. Five percent of the total SNPs were removed. The remaining SNPs were applied to imputation with IMPUTE2. The imputed outcomes were verified with the removed SNPs. We compared imputation references from Chinese and Japanese haplotypes from the HapMap phase II (HMII) and the complete set of haplotypes from the 1000 Genomes Project (1000G). The second part was imputation accuracy and yield in Thai patient dataset. Half of the autosomal SNPs was removed to create Set 1. Another dataset, Set 2, was then created where we switched which half of the SNPs were removed. Both Set 1 and Set 2 were imputed with HMII to create a complete imputed SNPs dataset. The dataset was used to validate association testing, SNPs annotation and imputation outcome.ResultsThe accuracy was highest for all populations when using the HMII reference, but at the cost of a lower yield. Thai genotypes showed the highest accuracy over other populations in both HMII and 1000G panels, although accuracy and yield varied across chromosomes. Imputation was tested in a clinical dataset to compare accuracy in gene-related regions, and coding regions were found to have a higher accuracy and yield.ConclusionsThis work provides the first evidence of imputation reference selection for Southeast Asian studies and highlights the effects of SNP locations respective to genes on imputation outcome. Researchers will need to consider the trade-off between accuracy and yield in future imputation studies.

Collaboration


Dive into the Nattaya Tangthawornchaikul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sirijitt Vasanawathana

Thailand Ministry of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thaneeya Duangchinda

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar

Wannee Limpitikul

Thailand Ministry of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge