Natthachet Tangdamrongsub
University of Newcastle
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natthachet Tangdamrongsub.
Remote Sensing | 2017
Hao Zhou; Zhicai Luo; Natthachet Tangdamrongsub; Lunche Wang; Lijie He; Chuang Xu; Qiong Li
Accurate terrestrial water storage (TWS) estimation is important to evaluate the situation of the water resources over the Yangtze River Basin (YRB). This study exploits the TWS observation from the new temporal gravity field model, HUST-Grace2016 (Huazhong University of Science and Technology), which is developed by a new low-frequency noise processing strategy. A novel GRACE (Gravity Recovery and Climate Experiment) post-processing approach is proposed to enhance the quality of the TWS estimate, and the improved TWS is used to characterize the drought and flood events over the YRB. The HUST-Grace2016-derived TWS presents good agreement with the CSR (Center for Space Research) mascon solution as well as the PCR-GLOBWB (PCRaster Global Water Balance) hydrological model. Particularly, our solution provides remarkable performance in identifying the extreme climate events e.g., flood and drought over the YRB and its sub-basins. The comparison between GRACE-derived TWS variations and the MODIS-derived (Moderate Resolution Imaging Spectroradiometer) inundated area variations is then conducted. The analysis demonstrates that the terrestrial reflectance data can provide an alternative way of cross-comparing and validating TWS information in Poyang Lake and Dongting Lake, with a correlation coefficient of 0.77 and 0.70, respectively. In contrast, the correlation is only 0.10 for Tai Lake, indicating the limitation of cross-comparison between MODIS and GRACE data. In addition, for the first time, the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) vertical velocity data is incorporated with GRACE TWS in the exploration of the climate-induced hydrological activities. The good agreement between non-seasonal NCEP/NCAR vertical velocities and non-seasonal GRACE TWSs is found in flood years (2005, 2010, 2012 and 2016) and drought years (2006, 2011 and 2013). The evidence shown in this study may contribute to the analysis of the mechanism of climate impacts on the YRB.
Journal of Geophysical Research | 2017
Jiancheng Han; Natthachet Tangdamrongsub; Cheinway Hwang; Hasanuddin Z. Abidin
Biomass burning is the principal tool for land clearing and a primary driver of land use change in Kalimantan (the Indonesian part of Borneo island). Biomass burning here has consumed millions of hectares of peatland and swamp forests. It also degrades air quality in Southeast Asia, perturbs the global carbon cycle, threatens ecosystem health and biodiversity, and potentially affects the global water cycle. Here we present the optimal estimate of water storage changes over Kalimantan from NASAs Gravity Recovery and Climate Experiment (GRACE). Over August 2002 to December 2014, our result shows a north-south dipole pattern in the long-term changes in terrestrial water storage (TWS) and groundwater storage (GWS). Both TWS and GWS increase in the northern part of Kalimantan, while they decrease in the southern part where fire events are the most severe. The loss rates in TWS and GWS in the southern part are 0.56 ± 0.11 cm yr−1 and 0.55 ± 0.10 cm yr−1, respectively. We use GRACE estimates, burned area, carbon emissions, and hydroclimatic data to study the relationship between biomass burning and water storage losses. The analysis shows that extensive biomass burning results in excessive evapotranspiration, which then increases long-term water storage losses in the fire-prone region of Kalimantan. Our results show the potentials of GRACE and its follow-on missions in assisting water storage and fire managements in a region with extensive biomass burning such as Kalimantan.
Journal of Geodesy | 2018
Michal Šprlák; Natthachet Tangdamrongsub
Vertical and horizontal spheroidal boundary-value problems (BVPs), i.e., determination of the external gravitational potential from the components of the gravitational gradient on the spheroid, are discussed in this article. The gravitational gradient is decomposed into the series of the vertical and horizontal vector spheroidal harmonics, before being orthogonalized in a weighted sense by two different approaches. The vertical and horizontal spheroidal BVPs are then formulated and solved in the spectral and spatial domains. Both orthogonalization methods provide the same analytical solutions for the vertical spheroidal BVP, and give distinct, but equivalent, analytical solutions for the horizontal spheroidal BVP. A closed-loop simulation is performed to test the correctness of the analytical solutions, and we investigate analytical properties of the sub-integral kernels. The systematic treatment of the spheroidal BVPs and the resulting mathematical equations extend the theoretical apparatus of geodesy and of the potential theory.
Remote Sensing | 2016
Ya Chi Liu; Cheinway Hwang; Jiancheng Han; Ricky Kao; Chau Ron Wu; Hsuan Chang Shih; Natthachet Tangdamrongsub
The East China Sea (ECS) is a region with shallow continental shelves and a mixed oceanic circulation system allowing sediments to deposit on its inner shelf, particularly near the estuary of the Yangtze River. The seasonal northward-flowing Taiwan Warm Current and southward-flowing China Coastal Current trap sediments from the Yangtze River, which are accumulated over time at rates of up to a few mm/year in equivalent water height. Here, we use the Gravity Recovery and Climate Experiment (GRACE) gravity products from three data centres to determine sediment mass accumulation rates (MARs) and variability on the ECS inner shelf. We restore the atmospheric and oceanic effects to avoid model contaminations on gravity signals associated with sediment masses. We apply destriping and spatial filters to improve the gravity signals from GRACE and use the Global Land Data Assimilation System to reduce land leakage. The GRACE-derived MARs over April 2002–March 2015 on the ECS inner shelf are about 6 mm/year and have magnitudes and spatial patterns consistent with those from sediment-core measurements. The GRACE-derived monthly sediment depositions show variations at time scales ranging from six months to more than two years. Typically, a positive mass balance of sediment deposition occurs in late fall to early winter when the southward coastal currents prevail. A negative mass balance happens in summer when the coastal currents are northward. We identify quasi-biennial sediment variations, which are likely to be caused by quasi-biennial variations in rain and erosion in the Yangtze River basin. We briefly explain the mechanisms of such frequency-dependent variations in the GRACE-derived ECS sediment deposition. There is no clear perturbation on sediment deposition over the ECS inner shelf induced by the Three Gorges Dam. The limitations of GRACE in resolving sediment deposition are its low spatial resolution (about 250 km) and possible contaminations by land hydrological and oceanic signals. Potential GRACE-derived sediment depositions in six major estuaries are presented.
Terrestrial Atmospheric and Oceanic Sciences | 2011
Cheinway Hwang; Yu-Chi Kao; Natthachet Tangdamrongsub
Natural Hazards | 2011
Natthachet Tangdamrongsub; Cheinway Hwang; Yu-Chi Kao
Journal of Geophysical Research | 2012
Natthachet Tangdamrongsub; Cheinway Hwang; C. K. Shum; Lei Wang
Hydrology and Earth System Sciences | 2018
Natthachet Tangdamrongsub; Shin-Chan Han; Mark Decker; In-Young Yeo; Hyungjun Kim
Geodesy and Geodynamics | 2018
Jiangjun Ran; Natthachet Tangdamrongsub; Junchao Shi; Changqing Wang; Lihui Wang; Xiaoyun Wan
Journal of Geophysical Research | 2017
Jiancheng Han; Natthachet Tangdamrongsub; Cheinway Hwang; Hasanuddin Z. Abidin