Nausica Arnoult
Catholic University of Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nausica Arnoult.
Nature Structural & Molecular Biology | 2012
Nausica Arnoult; Amandine Van Beneden; Anabelle Decottignies
Gene silencing by the repressive telomeric chromatin environment, referred to as telomere position effect (TPE), has been well characterized in yeast and depends on telomere length. However, proof of its existence at native human chromosome ends has remained elusive, mainly owing to the paucity of genes near telomeres. The discovery of TERRAs, the telomeric noncoding RNAs transcribed from subtelomeric promoters, paved the way to probing for telomere-length impact on physiological TPE. Using cell lines of various origins, we show that telomere elongation consistently represses TERRA expression. Repression is mediated by increased trimethylated H3K9 density at telomeres and by heterochromatin protein HP1α, with no detectable spreading of the marks beyond the telomeric tract, restricting human TPE to telomere transcription. Our data further support the existence of a negative-feedback mechanism in which longer TERRA molecules repress their own transcription upon telomere elongation.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Irena Draskovic; Nausica Arnoult; Villier Steiner; Silvia Bacchetti; P. Lomonte; Arturo Londono-Vallejo
Promyelocytic leukemia (PML) bodies (also called ND10) are dynamic nuclear structures implicated in a wide variety of cellular processes. ALT-associated PML bodies (APBs) are specialized PML bodies found exclusively in telomerase-negative tumors in which telomeres are maintained by recombination-based alternative (ALT) mechanisms. Although it has been suggested that APBs are directly implicated in telomere metabolism of ALT cells, their precise role and structure have remained elusive. Here we show that PML bodies in ALT cells associate with chromosome ends forming small, spatially well-defined clusters, containing on average 2–5 telomeres. Using an innovative approach that gently enlarges PML bodies in living cells while retaining their overall organization, we show that this physical enlargement of APBs spatially resolves the single telomeres in the cluster, but does not perturb the potential of the APB to recruit chromosome extremities. We show that telomere clustering in PML bodies is cell-cycle regulated and that unique telomeres within a cluster associate with recombination proteins. Enlargement of APBs induced the accumulation of telomere-telomere recombination intermediates visible on metaphase spreads and connecting heterologous chromosomes. The strand composition of these recombination intermediates indicated that this recombination is constrained to a narrow time window in the cell cycle following replication. These data provide strong evidence that PML bodies are not only a marker for ALT cells but play a direct role in telomere recombination, both by bringing together chromosome ends and by promoting telomere-telomere interactions between heterologous chromosomes.
Nucleic Acids Research | 2014
Harikleia Episkopou; Irena Draskovic; Amandine Van Beneden; Gaëlle Tilman; Marina Mattiussi; Matthieu Gobin; Nausica Arnoult; Arturo Londoño-Vallejo; Anabelle Decottignies
Proper telomeric chromatin configuration is thought to be essential for telomere homeostasis and stability. Previous studies in mouse suggested that loss of heterochromatin marks at telomeres might favor onset of Alternative Lengthening of Telomeres (ALT) pathway, by promoting homologous recombination. However, analysis of chromatin status at human ALT telomeres has never been reported. Here, using isogenic human cell lines and cellular hybrids, which rely either on telomerase or ALT to maintain telomeres, we show that chromatin compaction is reduced at ALT telomeres and this is associated with a global decrease in telomeric H3K9me3. This, subsequently, leads to upregulation of telomere transcription. Accordingly, restoration of a more condensed telomeric chromatin through telomerase-dependent elongation of short ALT telomeres reduces telomere transcription. We further show that loss of ATRX chromatin remodeler function, a frequent characteristic of ALT cells, is not sufficient to decrease chromatin condensation at telomeres nor to increase the expression of telomeric RNA species. These results offer new insight on telomeric chromatin properties in ALT cells and support the hypothesis that telomeric chromatin decondensation is important for ALT pathway.
Molecular and Cellular Biology | 2014
Joanna Boros; Nausica Arnoult; Vincent Stroobant; Jean-François Collet; Anabelle Decottignies
ABSTRACT Methylation of histone H3 on lysine 9 or 27 is crucial for heterochromatin formation. Previously considered hallmarks of, respectively, constitutive and facultative heterochromatin, recent evidence has accumulated in favor of coexistence of these two marks and their cooperation in gene silencing maintenance. H3K9me2/3 ensures anchorage at chromatin of heterochromatin protein 1α (HP1α), a main component of heterochromatin. HP1α chromoshadow domain, involved in dimerization and interaction with partners, has additional but still unclear roles in HP1α recruitment to chromatin. Because of previously suggested links between polycomb repressive complex 2 (PRC2), which catalyzes H3K27 methylation, and HP1α, we tested whether PRC2 may regulate HP1α abundance at chromatin. We found that the EZH2 and SUZ12 subunits of PRC2 are required for HP1α stability, as knockdown of either protein led to HP1α degradation. Similar results were obtained upon overexpression of H3K27me2/3 demethylases. We further showed that binding of HP1α/β/γ to H3K9me3 peptides is greatly increased in the presence of H3K27me3, and this is dependent on PRC2. These data fit with recent proteomic studies identifying PRC2 as an indirect H3K9me3 binder in mouse tissues and suggest the existence of a cooperative mechanism of HP1α anchorage at chromatin involving H3 methylation on both K9 and K27 residues.
Oncogene | 2009
Gaëlle Tilman; Axelle Loriot; Amandine Van Beneden; Nausica Arnoult; Arturo Londono-Vallejo; Charles De Smet; Anabelle Decottignies
Most human tumor cells acquire immortality by activating the expression of telomerase, a ribonucleoprotein that maintains stable telomere lengths at chromosome ends throughout cell divisions. Other tumors use an alternative mechanism of telomere lengthening (ALT), characterized by high frequencies of telomeric sister chromatid exchanges (T-SCEs). Mechanisms of ALT activation are still poorly understood, but recent studies suggest that DNA hypomethylation of chromosome ends might contribute to the process by facilitating T-SCEs. Here, we show that ALT/T-SCEhigh tumor cells display low DNA-methylation levels at the D4Z4 and DNF92 subtelomeric sequences. Surprisingly, however, the same sequences retained high methylation levels in ALT/T-SCEhigh SV40-immortalized fibroblasts. Moreover, T-SCE rates were efficiently reduced by ectopic expression of active telomerase in ALT tumor cells, even though subtelomeric sequences remained hypomethylated. We also show that hypomethylation of subtelomeric sequences in ALT tumor cells is correlated with genome-wide hypomethylation of Alu repeats and pericentromeric Sat2 DNA sequences. Overall, this study suggests that, although subtelomeric DNA hypomethylation is often coincident with the ALT process in human tumor cells, it is not required for T-SCE.
Genes & Development | 2009
Nausica Arnoult; Carole Saintome; Isabelle Ourliac-Garnier; Jean-Francxois Riou; Arturo Londono-Vallejo
Mechanisms of telomere replication remain poorly defined. It has been suggested that G-rich telomeric strand replication by lagging mechanisms requires, in a stochastic way, the WRN protein. Here we show that this requirement is more systematic than previously thought. Our data are compatible with a situation in which, in the absence of WRN, DNA synthesis at replication forks is uncoupled, thus allowing replication to continue on the C strand, while single G strands accumulate. We also show that in cells in which both WRN and POT1 are limiting, both G- and C-rich telomeric strands shorten, suggesting a complete replication block. Under this particular condition, expression of a fragment spanning the two POT1-OB (oligonucleotide-binding) fold domains is able to restore C (but not G) strand replication, suggesting that binding of POT1 to the lagging strand allows DNA synthesis uncoupling in the absence of WRN. Furthermore, in vitro experiments indicate that purified POT1 has a higher affinity for the telomeric G-rich strand than purified RPA. We propose a model in which the relative enrichments of POT1 versus RPA on the telomeric lagging strand allows or does not allow uncoupling of DNA synthesis at the replication fork. Our study reveals an unanticipated role for hPOT1 during telomere replication.
Genome Research | 2013
Marion Scheibe; Nausica Arnoult; Dennis Kappei; Frank Buchholz; Anabelle Decottignies; Falk Butter; Matthias Mann
Telomeres are actively transcribed into telomeric repeat-containing RNA (TERRA), which has been implicated in the regulation of telomere length and heterochromatin formation. Here, we applied quantitative mass spectrometry (MS)-based proteomics to obtain a high-confidence interactome of TERRA. Using SILAC-labeled nuclear cell lysates in an RNA pull-down experiment and two different salt conditions, we distinguished 115 proteins binding specifically to TERRA out of a large set of background binders. While TERRA binders identified in two previous studies showed little overlap, using quantitative mass spectrometry we obtained many candidates reported in these two studies. To test whether novel candidates found here are involved in TERRA regulation, we performed an esiRNA-based interference analysis for 15 of them. Knockdown of 10 genes encoding candidate proteins significantly affected total cellular levels of TERRA, and RNAi of five candidates perturbed TERRA recruitment to telomeres. Notably, depletion of SRRT/ARS2, involved in miRNA processing, up-regulated both total and telomere-bound TERRA. Conversely, knockdown of MORF4L2, a component of the NuA4 histone acetyltransferase complex, reduced TERRA levels both globally and for telomere-bound TERRA. We thus identified new proteins involved in the homeostasis and telomeric abundance of TERRA, extending our knowledge of TERRA regulation.
Epigenetics | 2012
Gaëlle Tilman; Nausica Arnoult; Sandrine Lenglez; Amandine Van Beneden; Axelle Loriot; Charles De Smet; Anabelle Decottignies
Epigenetic dysfunctions, including DNA methylation alterations, play major roles in cancer initiation and progression. Although it is well established that gene promoter demethylation activates transcription, it remains unclear whether hypomethylation of repetitive heterochromatin similarly affects expression of non-coding RNA from these loci. Understanding how repetitive non-coding RNAs are transcriptionally regulated is important given that their established upregulation by the heat shock (HS) pathway suggests important functions in cellular response to stress, possibly by promoting heterochromatin reconstruction. We found that, although pericentromeric satellite 2 (Sat2) DNA hypomethylation is detected in a majority of cancer cell lines of various origins, DNA methylation loss does not constitutively hyperactivate Sat2 expression, and also does not facilitate Sat2 transcriptional induction upon heat shock. In melanoma tumor samples, our analysis revealed that the HS response, frequently upregulated in tumors, is probably the main determinant of Sat2 RNA expression in vivo. Next, we tested whether HS pathway hyperactivation may drive Sat2 demethylation. Strikingly, we found that both hyperthermia and hyperactivated RasV12 oncogene, another potent inducer of the HS pathway, reduced Sat2 methylation levels by up to 27% in human fibroblasts recovering from stress. Demethylation occurred locally on Sat2 repeats, resulting in a demethylation signature that was also detected in cancer cell lines with moderate genome-wide hypomethylation. We therefore propose that upregulation of Sat2 transcription in response to HS pathway hyperactivation during tumorigenesis may promote localized demethylation of the locus. This, in turn, may contribute to tumorigenesis, as demethylation of Sat2 was previously reported to favor chromosomal rearrangements.
Frontiers in Oncology | 2013
Amandine Van Beneden; Nausica Arnoult; Anabelle Decottignies
A commentary on TERRA expression levels do not correlate with telomere length and radiation sensitivity in human cancer cell lines
Telomeres, Telomerase and Disease | 2014
Charikleia Episkopou; Irena Draskovic; Amandine Van Beneden; Gaëlle Tilman; Marina Mattiussi; Matthieu Gobin; Nausica Arnoult; Arturo Londono-Vallejo; Anabelle Decottignies