Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Navindra P. Seeram is active.

Publication


Featured researches published by Navindra P. Seeram.


Journal of Agricultural and Food Chemistry | 2008

Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States.

Navindra P. Seeram; Michael Aviram; Yanjun Zhang; Susanne M. Henning; Lydia Feng; Mark Dreher; David Heber

A number of different beverage products claim to have antioxidant potency due to their perceived high content of polyphenols. Basic and applied research indicates that pomegranate juice (PJ), produced from the Wonderful variety of Punica granatum fruits, has strong antioxidant activity and related health benefits. Although consumers are familiar with the concept of free radicals and antioxidants, they are often misled by claims of superior antioxidant activity of different beverages, which are usually based only on testing of a limited spectrum of antioxidant activities. There is no available direct comparison of PJs antioxidant activity to those of other widely available polyphenol-rich beverage products using a comprehensive variety of antioxidant tests. The present study applied (1) four tests of antioxidant potency [Trolox equivalent antioxidant capacity (TEAC), total oxygen radical absorbance capacity (ORAC), free radical scavenging capacity by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP)]; (2) a test of antioxidant functionality, that is, inhibition of low-density lipoprotein (LDL) oxidation by peroxides and malondialdehyde methods; and (3) evaluation of the total polyphenol content [by gallic acid equivalents (GAEs)] of polyphenol-rich beverages in the marketplace. The beverages included several different brands as follows: apple juice (3), açaí juice (3), black cherry juice (3), blueberry juice (3), cranberry juice (3), Concord grape juice (3), orange juice (3), red wines (3), iced tea beverages (10) [black tea (3), green tea (4), white tea (3)], and a major PJ available in the U.S. market. An overall antioxidant potency composite index was calculated by assigning each test equal weight. PJ had the greatest antioxidant potency composite index among the beverages tested and was at least 20% greater than any of the other beverages tested. Antioxidant potency, ability to inhibit LDL oxidation, and total polyphenol content were consistent in classifying the antioxidant capacity of the polyphenol-rich beverages in the following order: PJ>red wine>Concord grape juice>blueberry juice>black cherry juice, açaí juice, cranberry juice>orange juice, iced tea beverages, apple juice. Although in vitro antioxidant potency does not prove in vivo biological activity, there is also consistent clinical evidence of antioxidant potency for the most potent beverages including both PJ and red wine.


Clinical Cancer Research | 2006

Phase II Study of Pomegranate Juice for Men with Rising Prostate-Specific Antigen following Surgery or Radiation for Prostate Cancer

Allan J. Pantuck; John T. Leppert; Nazy Zomorodian; William J. Aronson; Jenny Hong; R. James Barnard; Navindra P. Seeram; Harley Liker; He-Jing Wang; Robert Elashoff; David Heber; Michael Aviram; Louis J. Ignarro; Arie S. Belldegrun

Purpose: Phytochemicals in plants may have cancer preventive benefits through antioxidation and via gene-nutrient interactions. We sought to determine the effects of pomegranate juice (a major source of antioxidants) consumption on prostate-specific antigen (PSA) progression in men with a rising PSA following primary therapy. Experimental Design: A phase II, Simon two-stage clinical trial for men with rising PSA after surgery or radiotherapy was conducted. Eligible patients had a detectable PSA >0.2 and <5 ng/mL and Gleason score ≤7. Patients were treated with 8 ounces of pomegranate juice daily (Wonderful variety, 570 mg total polyphenol gallic acid equivalents) until disease progression. Clinical end points included safety and effect on serum PSA, serum-induced proliferation and apoptosis of LNCaP cells, serum lipid peroxidation, and serum nitric oxide levels. Results: The study was fully accrued after efficacy criteria were met. There were no serious adverse events reported and the treatment was well tolerated. Mean PSA doubling time significantly increased with treatment from a mean of 15 months at baseline to 54 months posttreatment (P < 0.001). In vitro assays comparing pretreatment and posttreatment patient serum on the growth of LNCaP showed a 12% decrease in cell proliferation and a 17% increase in apoptosis (P = 0.0048 and 0.0004, respectively), a 23% increase in serum nitric oxide (P = 0.0085), and significant (P < 0.02) reductions in oxidative state and sensitivity to oxidation of serum lipids after versus before pomegranate juice consumption. Conclusions: We report the first clinical trial of pomegranate juice in patients with prostate cancer. The statistically significant prolongation of PSA doubling time, coupled with corresponding laboratory effects on prostate cancer in vitro cell proliferation and apoptosis as well as oxidative stress, warrant further testing in a placebo-controlled study.


Phytomedicine | 2001

Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries

Navindra P. Seeram; Momin Ra; Muraleedharan G. Nair; Leslie D. Bourquin

Anthocyanins from tart cherries, Prunus cerasus L. (Rosaceae) cv. Balaton and Montmorency; sweet cherries, Prunus avium L. (Rosaceae); bilberries, Vaccinum myrtillus L. (Ericaceae); blackberries, Rubus sp. (Rosaceae); blueberries var. Jersey, Vaccinium corymbosum L. (Ericaceae); cranberries var. Early Black, Vaccinium macrocarpon Ait. (Ericaceae); elderberries, Sambucus canadensis (Caprifoliaceae); raspberries, Rubus idaeus (Rosaceae); and strawberries var. Honeoye, Fragaria x ananassa Duch. (Rosaceae), were investigated for cyclooxygenase inhibitory and antioxidant activities. The presence and levels of cyanidin-3-glucosylrutinoside 1 and cyanidin-3-rutinoside 2 were determined in the fruits using HPLC. The antioxidant activity of anthocyanins from cherries was comparable to the commercial antioxidants, tert-butylhydroquinone, butylated hydroxytoluene and butylated hydroxyanisole, and superior to vitamin E, at a test concentration of 125 microg/ml. Anthocyanins from raspberries and sweet cherries demonstrated 45% and 47% cyclooxygenase-I and cyclooxygenase-II inhibitory activities, respectively, when assayed at 125 microg/ml. The cyclooxygenase inhibitory activities of anthocyanins from these fruits were comparable to those of ibuprofen and naproxen at 10 microM concentrations. Anthocyanins 1 and 2 are present in both cherries and raspberry. The yields of pure anthocyanins 1 and 2 in 100 g Balaton and Montmorency tart cherries, sweet cherries and raspberries were 21, 16.5; 11, 5; 4.95, 21; and 4.65, 13.5 mg, respectively. Fresh blackberries and strawberries contained only anthocyanin 2 in yields of 24 and 22.5 mg/100 g, respectively. Anthocyanins 1 and 2 were not found in bilberries, blueberries, cranberries or elderberries.


Cancer Letters | 2003

Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells

Soo Young Kang; Navindra P. Seeram; Muraleedharan G. Nair; Leslie D. Bourquin

Anthocyanins, which are bioactive phytochemicals, are widely distributed in plants and especially enriched in tart cherries. Based on previous observations that tart cherry anthocyanins and their respective aglycone, cyanidin, can inhibit cyclooxygenase enzymes, we conducted experiments to test the potential of anthocyanins to inhibit intestinal tumor development in Apc(Min) mice and growth of human colon cancer cell lines. Mice consuming the cherry diet, anthocyanins, or cyanidin had significantly fewer and smaller cecal adenomas than mice consuming the control diet or sulindac. Colonic tumor numbers and volume were not significantly influenced by treatment. Anthocyanins and cyanidin also reduced cell growth of human colon cancer cell lines HT 29 and HCT 116. The IC(50) of anthocyanins and cyanidin was 780 and 63 microM for HT 29 cells, respectively and 285 and 85 microM for HCT 116 cells, respectively. These results suggest that tart cherry anthocyanins and cyanidin may reduce the risk of colon cancer.


Cancer Letters | 2003

Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana

Bolleddula Jayaprakasam; Navindra P. Seeram; Muraleedharan G. Nair

Bioassay-guided purification of an extract of Cucurbita andreana fruits yielded cucurbitacins B (1), D (2), E (3), and I (4). These cucurbitacins were evaluated for their inhibitory effects on the growth of human colon (HCT-116), breast (MCF-7), lung (NCI-H460), and central nervous system (CNS) (SF-268) cancer cell lines, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes and on lipid peroxidation. Inhibitory activities of cucurbitacins B (1), D (2), E (3) and I (4), respectively, were for colon 81.5, 80.4, 77, and 65% at 0.4 microM, breast 87, 78, 66.5, and 12% at 0.4 microM, lung 96, 43, 37 and 2% at 0.1 microM and CNS 92, 25, 24 and 4% at 0.05 microM. Adriamycin (doxorubicin) was used as a positive control, which showed 64, 47, 45 and 71% inhibition of HCT-116 (colon), MCF-7 (breast), NCI-H460 (lung) and SF-268 (CNS) cell lines, respectively, at 0.3 x 10(-5) M. Compounds 1, 2, 3, and 4 inhibited the COX-2 enzyme by 32, 29, 35, and 27%, respectively, at 100 microg/ml. However these compounds did not inhibit the COX-1 enzyme at this concentration. Ibuprofen, naproxen and vioxx, commercial antiinflammatory drugs, were tested as controls for the inhibition of COX-1 and COX-2 enzymes at concentrations of 2.1, 2.5 and 1.67 microg/ml, respectively. Ibuprofen and naproxen exhibited 59 and 95% COX-1, and 53 and 79% COX-2 inhibitory activities, respectively. Vioxx showed specific COX-2 inhibition by 71%. Also, cucurbitacins 1 and 4 inhibited lipid peroxidation by 59 and 23%, respectively, at 100 microg/ml.


Clinical Cancer Research | 2006

Effect of Altering Dietary ω-6/ω-3 Fatty Acid Ratios on Prostate Cancer Membrane Composition, Cyclooxygenase-2, and Prostaglandin E2

Naoko Kobayashi; R. James Barnard; Susanne M. Henning; David Elashoff; Srinivasa T. Reddy; Pinchas Cohen; Pak Leung; Jenny Hong-Gonzalez; Stephen J. Freedland; Jonathan W. Said; Dorina Gui; Navindra P. Seeram; Laura M. Popoviciu; Dilprit Bagga; David Heber; John A. Glaspy; William J. Aronson

Purpose: To determine whether altering the dietary content of ω-6 (n-6) and ω-3 (n-3) polyunsaturated fatty acids affects the growth of androgen-sensitive prostate cancer xenografts, tumor membrane fatty acid composition, and tumor cyclooxygenase-2 and prostaglandin E2 (PGE2) levels. Experimental Design: Individually caged male severe combined immunodeficiency mice were fed isocaloric 20% kcal fat diets with the fat derived either primarily from n-6 fatty acids (n-6 group) or with the fat consisting of n-6 and n-3 fatty acids in a ratio of 1:1 (n-3 group), and injected s.c. with Los Angeles Prostate Cancer 4 (LAPC-4) cells. Tumor volumes and mouse weights were measured weekly, caloric intake was measured 3 days per week, and tumors and serum were harvested at 8 weeks postinjection. Results: Tumor growth rates, final tumor volumes, and serum prostate-specific antigen levels were reduced in the n-3 group relative to the n-6 group. The n-3 group tumors had decreased proliferation (Ki67 staining) and increased apoptosis (terminal nucleotidyl transferase–mediated nick end labeling staining). In vitro proliferation of LAPC-4 cells in medium containing n-3 group serum was reduced by 22% relative to LAPC-4 cells cultured in medium containing serum from the n-6 group. The n-6/n-3 fatty acid ratios in serum and tumor membranes were lower in the n-3 group relative to the n-6 group. In addition, n-3 group tumors had decreased cyclooxygenase-2 protein and mRNA levels, an 83% reduction in PGE2 levels, and decreased vascular endothelial growth factor expression. Conclusion: These results provide a sound basis for clinical trials evaluating the effect of dietary n-3 fatty acids from fish oil on tumor PGE2 and membrane fatty acid composition, and serum and tumor biomarkers of progression in men with prostate cancer.


Behavioural Brain Research | 2004

Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat

Jill M. Tall; Navindra P. Seeram; Chengshui Zhao; Muraleedharan G. Nair; Richard A. Meyer; Srinivasa N. Raja

The use of complementary and alternative medicine (CAM) has increased in the United States and more patients are seeking CAM therapies for control of pain. The present investigation tested the efficacy of orally administered anthocyanins extracted from tart cherries on inflammation-induced pain behavior in rats. Paw withdrawal latency to radiant heat and paw withdrawal threshold to von Frey probes were measured. The first set of experiments examined the effects of tart cherry anthocyanins (400 mg/kg) on the nociceptive behaviors and edema associated with inflammation induced by intraplantar injection of 1% carrageenan. These studies also included tests of motor coordination. The second set of experiments determined if tart cherry anthocyanins (15, 85, and 400 mg/kg) dose-dependently affected the inflammation induced by intraplantar injection of 25% complete Freunds adjuvant. We found that tart cherry extracts reduce inflammation-induced thermal hyperalgesia, mechanical hyperalgesia and paw edema. The suppression of thermal hyperalgesia was dose-dependent and the efficacy of highest dose (400 mg/kg) was similar to indomethacin (5 mg/kg). The highest dose anthocyanin (400 mg/kg) had no effects on motor function. These data suggest that tart cherry anthocyanins may have a beneficial role in the treatment of inflammatory pain. The antihyperalgesic effects may be related to the anti-inflammatory and antioxidant properties of anthocyanins. A better understanding of the modulatory role of dietary constituents and phytonutrients on pain will offer further therapeutic options for treating patients with persistent and chronic pain conditions.


Cancer Research | 2010

Blueberry Phytochemicals Inhibit Growth and Metastatic Potential of MDA-MB-231 Breast Cancer Cells through Modulation of the Phosphatidylinositol 3-Kinase Pathway

Lynn S. Adams; Sheryl Phung; Natalie Yee; Navindra P. Seeram; Liya Li; Shiuan Chen

Dietary phytochemicals are known to exhibit a variety of anticarcinogenic properties. This study investigated the chemopreventive activity of blueberry extract in triple-negative breast cancer cell lines in vitro and in vivo. Blueberry decreased cell proliferation in HCC38, HCC1937, and MDA-MB-231 cells with no effect on the nontumorigenic MCF-10A cell line. Decreased metastatic potential of MDA-MB-231 cells by blueberry was shown through inhibition of cell motility using wound-healing assays and migration through a polyethylene terephthalate membrane. Blueberry treatment decreased the activity of matrix metalloproteinase-9 and the secretion of urokinase-type plasminogen activator while increasing tissue inhibitor of metalloproteinase-1 and plasminogen activator inhibitor-1 secretion in MDA-MB-231 conditioned medium as shown by Western blotting. Cell signaling pathways that control the expression/activation of these processes were investigated via Western blotting and reporter gene assay. Treatment with blueberry decreased phosphatidylinositol 3-kinase (PI3K)/AKT and NFkappaB activation in MDA-MB-231 cells, where protein kinase C and extracellular signal-regulated kinase (ERK) were not affected. In vivo, the efficacy of blueberry to inhibit triple-negative breast tumor growth was evaluated using the MDA-MB-231 xenograft model. Tumor weight and proliferation (Ki-67 expression) were decreased in blueberry-treated mice, where apoptosis (caspase-3 expression) was increased compared with controls. Immunohistochemical analysis of tumors from blueberry-fed mice showed decreased activation of AKT and p65 NFkappaB signaling proteins with no effect on the phosphorylation of ERK. These data illustrate the inhibitory effect of blueberry phytochemicals on the growth and metastatic potential of MDA-MB-231 cells through modulation of the PI3K/AKT/NFkappaB pathway.


Nutrition and Cancer | 2003

Inhibition of Proliferation of Human Cancer Cells and Cyclooxygenase Enzymes by Anthocyanidins and Catechins

Navindra P. Seeram; Yanjun Zhang; Muraleedharan G. Nair

The widespread consumption of diets rich in anthocyanin and catechin content prompted the evaluation of their in vitro inhibitory effects on cyclooxygenase (COX) enzymes and on the proliferation of human cancer cell lines. Five anthocyanidins consisting of cyanidin (1), delphinidin (2), pelargonidin (3), peonidin (4), and malvidin (5) were tested for COX-1 and -2 enzyme inhibitory activities at 40 μM. Eleven catechins consisting of (+)-catechin (6), (−)-catechin (7), (±)-catechin (8), (+)-epicatechin (9), (−)-epicatechin (10), (−)-epigallocatechin (11), (−)-gallocatechin (12), (−)-epicatechin gallate (13), (−)-catechin gallate (14), (−)-epigallocatechin gallate (15), and (−)-gallocatechin gallate (16) were tested for inhibitory effects of COX-1 and -2 enzymes at 80 μM. Of the compounds tested, the galloyl derivatives of the catechins 11-15, cyanidin (1) and malvidin (5), showed the best COX inhibitory activities compared with the commercial anti-inflammatory drugs ibuprofen (at 10μM), naproxen (at 10 μM), Vioxx® (at 1.67 ppm), and Celebrex(tm)(at 1.67 ppm). Inhibition of the proliferation of the human cancer cell lines MCF-7 (breast), SF-268 (central nervous system, CNS), HCT-116 (colon), and NCI-H460 (lung) was evaluated at concentrations between 100 and 6.25 μM compared with the commercial standard, adriamycin (doxorubicin) at 6.25 μM. At 100-μM concentrations, anthocyanidins 1-5 and catechins 6-10 did not inhibit proliferation of the four cell lines. At 50-μM concentrations, catechins 12, 15, and 16 showed 95%, 100%, and 97% inhibition of breast cells, respectively. At 50-μMconcentrations 12 and 16 were the most effective catechins against colon cells (85% and 93%, respectively) and lung cells (87% and 67%, respectively). CNS cells were the most sensitive of the test cell lines, and total growth inhibition was obtained with catechins 12 and 16 at 100-μMconcentrations. Overall, only the galloyl derivatives of catechins 11-16 inhibited the proliferation of the cancer cell lines.


Pediatric Research | 2005

Maternal Dietary Supplementation with Pomegranate Juice Is Neuroprotective in an Animal Model of Neonatal Hypoxic-Ischemic Brain Injury

David J Loren; Navindra P. Seeram; Risa N. Schulman; David M. Holtzman

Neonatal hypoxic-ischemic brain injury remains a significant cause of morbidity and mortality and lacks effective therapies for prevention and treatment. Recently, interest in the biology of polyphenol compounds has led to the discovery that dietary supplementation with foods rich in polyphenols (e.g. blueberries, green tea extract) provides neuroprotection in adult animal models of ischemia and Alzheimers disease. We sought to determine whether protection of the neonatal brain against a hypoxic-ischemic insult could be attained through supplementation of the maternal diet with pomegranate juice, notable for its high polyphenol content. Mouse dams were provided ad libitum access to drinking water with pomegranate juice, at one of three doses, as well as plain water, sugar water, and vitamin C water controls during the last third of pregnancy and throughout the duration of litter suckling. At postnatal day 7, pups underwent unilateral carotid ligation followed by exposure to 8% oxygen for 45 min. Brain injury was assessed histologically after 1 wk (percentage of tissue area loss) and biochemically after 24 h (caspase-3 activity). Dietary supplementation with pomegranate juice resulted in markedly decreased brain tissue loss (>60%) in all three brain regions assessed, with the highest pomegranate juice dose having greatest significance (p ≤ 0.0001). Pomegranate juice also diminished caspase-3 activation by 84% in the hippocampus and 64% in the cortex. Ellagic acid, a polyphenolic component in pomegranate juice, was detected in plasma from treated but not control pups. These results demonstrate that maternal dietary supplementation with pomegranate juice is neuroprotective for the neonatal brain.

Collaboration


Dive into the Navindra P. Seeram's collaboration.

Top Co-Authors

Avatar

David Heber

University of California

View shared research outputs
Top Co-Authors

Avatar

Hang Ma

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Liya Li

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Tao Yuan

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Yanjun Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Antonio González-Sarrías

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ru-Po Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Weixi Liu

University of Rhode Island

View shared research outputs
Researchain Logo
Decentralizing Knowledge