Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nawazish Naqvi is active.

Publication


Featured researches published by Nawazish Naqvi.


Cell | 2014

A Proliferative Burst During Preadolescence Establishes the Final Cardiomyocyte Number

Nawazish Naqvi; Ming Li; John W. Calvert; Thor Tejada; Jonathan P. Lambert; Jianxin Wu; Scott H. Kesteven; Sara R. Holman; Torahiro Matsuda; Joshua D. Lovelock; Wesley W. Howard; Siiri E. Iismaa; Andrea Y. Chan; Brian H. Crawford; Mary B. Wagner; David I. K. Martin; David J. Lefer; Robert M. Graham; Ahsan Husain

It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here, we show that a thyroid hormone surge activates the IGF-1/IGF-1-R/Akt pathway on postnatal day 15 and initiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes. This proliferation increases cardiomyocyte numbers by ~40%, causing a major disparity between heart and cardiomyocyte growth. Also, the response to cardiac injury at postnatal day 15 is intermediate between that observed at postnatal days 2 and 21, further suggesting persistence of cardiomyocyte proliferative capacity beyond the perinatal period. If replicated in humans, this may allow novel regenerative therapies for heart diseases.


Journal of Clinical Investigation | 2010

Mast cell chymase limits the cardiac efficacy of Ang I–converting enzyme inhibitor therapy in rodents

Chih-Chang Wei; Naoki Hase; Yukiko Inoue; Eddie W. Bradley; Eiji Yahiro; Ming Li; Nawazish Naqvi; Pamela C. Powell; Ke Shi; Yoshimasa Takahashi; Keijiro Saku; Hidenori Urata; Louis J. Dell'Italia; Ahsan Husain

Ang I-converting enzyme (ACE) inhibitors are widely believed to suppress the deleterious cardiac effects of Ang II by inhibiting locally generated Ang II. However, the recent demonstration that chymase, an Ang II-forming enzyme stored in mast cell granules, is present in the heart has added uncertainty to this view. As discussed here, using microdialysis probes tethered to the heart of conscious mice, we have shown that chronic ACE inhibitor treatment did not suppress Ang II levels in the LV interstitial fluid (ISF) despite marked inhibition of ACE. However, chronic ACE inhibition caused a marked bradykinin/B2 receptor-mediated increase in LV ISF chymase activity that was not observed in mast cell-deficient KitW/KitW-v mice. In chronic ACE inhibitor-treated mast cell-sufficient littermates, chymase inhibition decreased LV ISF Ang II levels substantially, indicating the importance of mast cell chymase in regulating cardiac Ang II levels. Chymase-dependent processing of other regulatory peptides also promotes inflammation and tissue remodeling. We found that combined chymase and ACE inhibition, relative to ACE inhibition alone, improved LV function, decreased adverse cardiac remodeling, and improved survival after myocardial infarction in hamsters. These results suggest that chymase inhibitors could be a useful addition to ACE inhibitor therapy in the treatment of heart failure.


Circulation Research | 2008

c-kit Is Required for Cardiomyocyte Terminal Differentiation

Ming Li; Nawazish Naqvi; Eiji Yahiro; Ke Liu; Pamela C. Powell; Wayne E. Bradley; David I. K. Martin; Robert M. Graham; Louis J. Dell'Italia; Ahsan Husain

c-kit, the transmembrane tyrosine kinase receptor for stem cell factor, is required for melanocyte and mast cell development, hematopoiesis, and differentiation of spermatogonial stem cells. We show here that in the heart, c-kit is expressed not only by cardiac stem cells but also by cardiomyocytes, commencing immediately after birth and terminating a few days later, coincident with the onset of cardiomyocyte terminal differentiation. To examine the function of c-kit in cardiomyocyte terminal differentiation, we used compound heterozygous mice carrying the W (null) and Wv (dominant negative) mutations of c-kit. In vivo, adult W/Wv cardiomyocytes are phenotypically indistinguishable from their wild-type counterparts. After acute pressure overload adult W/Wv cardiomyocytes reenter the cell cycle and proliferate, leading to left ventricular growth; furthermore in transgenic mice with cardiomyocyte-restricted overexpression of the dominant negative Wv mutant, pressure overload causes cardiomyocytes to reenter the cell cycle. In contrast, in wild-type mice left ventricular growth after pressure overload results mainly from cardiomyocyte hypertrophy. Importantly, W/Wv mice with pressure overload–induced cardiomyocyte hyperplasia had improved left ventricular function and survival. In W/Wv mice, c-kit dysfunction also resulted in an ≈14-fold decrease (P<0.01) in the number of c-kit+/GATA4+ cardiac progenitors. These findings identify novel functions for c-kit: promotion of cardiac stem cell differentiation and regulation of cardiomyocyte terminal differentiation.


Nature Communications | 2015

CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury.

Hirokuni Akahori; Vinit Karmali; Rohini Polavarapu; Alicia N. Lyle; Daiana Weiss; Eric Shin; Ahsan Husain; Nawazish Naqvi; Richard Van Dam; Anwer Habib; Cheol Ung Choi; Adrienne L. King; Kimberly Pachura; W. Robert Taylor; David J. Lefer; Aloke V. Finn

Macrophages are an essential component of the immune response to ischaemic injury and play an important role in promoting inflammation and its resolution, which is necessary for tissue repair. The type I transmembrane glycoprotein CD163 is exclusively expressed on macrophages, where it acts as a receptor for haemoglobin:haptoglobin complexes. An extracellular portion of CD163 circulates in the blood as a soluble protein, for which no physiological function has so far been described. Here we show that during ischaemia, soluble CD163 functions as a decoy receptor for TWEAK, a secreted pro-inflammatory cytokine of the tumour necrosis factor family, to regulate TWEAK-induced activation of canonical nuclear factor-κB (NF-κB) and Notch signalling necessary for myogenic progenitor cell proliferation. Mice with deletion of CD163 have transiently elevated levels of TWEAK, which stimulate muscle satellite cell proliferation and tissue regeneration in their ischaemic and non-ischaemic limbs. These results reveal a role for soluble CD163 in regulating muscle regeneration after ischaemic injury.


Stem Cell Research | 2014

Thyroid hormone action in postnatal heart development.

Ming Li; Siiri E. Iismaa; Nawazish Naqvi; Amy Nicks; Ahsan Husain; Robert M. Graham

Thyroid hormone is a critical regulator of cardiac growth and development, both in fetal life and postnatally. Here we review the role of thyroid hormone in postnatal cardiac development, given recent insights into its role in stimulating a burst of cardiomyocyte proliferation in the murine heart in preadolescence; a response required to meet the massive increase in circulatory demand predicated by an almost quadrupling of body weight during a period of about 21 days from birth to adolescence. Importantly, thyroid hormone metabolism is altered by chronic diseases, such as heart failure and ischemic heart disease, as well as in very sick children requiring surgery for congenital heart diseases, which results in low T3 syndrome that impairs cardiovascular function and is associated with a poor prognosis. Therapy with T3 or thyroid hormone analogs has been shown to improve cardiac contractility; however, the mechanism is as yet unknown. Given the postnatal cardiomyocyte mitogenic potential of T3, its ability to enhance cardiac function by promoting cardiomyocyte proliferation warrants further consideration.


Seminars in Dialysis | 2011

Increased Plasma Chymase Concentration and Mast Cell Chymase Expression in Venous Neointimal Lesions of Patients with CKD and ESRD

Haimanot Wasse; Angel A. Rivera; Rong Huang; Deborah E. Martinson; Qi Long; William McKinnon; Nawazish Naqvi; Ahsan Husain

The underlying inflammatory component of chronic kidney disease may predispose blood vessels to intimal hyperplasia (IH), which is the primary cause of dialysis access failure. We hypothesize that vascular pathology and markers of IH formation are antecedent to arteriovenous (AV) fistula creation. Blood, cephalic, and basilic vein segments were collected from predialysis chronic kidney disease (CKD) patients with no previous AV access and patients with end‐stage renal disease (ESRD). Immunohistochemistry was performed with antibodies against mast cell chymase, transforming growth factor‐beta (TGF‐β) and interleukin‐6 (IL‐6), which cause IH. Plasma chymase was measured by ELISA. IH was present in 91% of CKD and 75% of ESRD vein segments. Chymase was abundant in vessels with IH, with the greatest expression in intima and medial layers, and virtually absent in the controls. Chymase colocalized with TGF‐β1 and IL‐6. Plasma chymase concentration was elevated up to 33‐fold in patients with CKD versus controls and was associated with increased chymase in vessels with IH. We show that chymase expression in vessels with IH corresponds with plasma chymase concentrations. As chymase inhibition attenuates IH in animal models, and we find chymase is highly expressed in IH lesions of patients with CKD and ESRD, we speculate that chymase inhibition could have therapeutic value in humans.


Pediatric Cardiology | 2009

Insights into the Characteristics of Mammalian Cardiomyocyte Terminal Differentiation Shown Through the Study of Mice with a Dysfunctional c-Kit

Nawazish Naqvi; Ming Li; Eiji Yahiro; Robert M. Graham; Ahsan Husain

Mammalian cardiomyocytes withdraw from the cell cycle soon after birth. This process is called terminal differentiation. The c-kit, a receptor tyrosine kinase, is expressed on cardiomyocytes immediately after birth but for only a few days. In mice with genetic c-kit dysfunction, adult cardiomyocytes are phenotypically indistinguishable from those of wild type mice, except that they are capable of proliferation in vivo after acute pressure overload. This review explores the idea that postnatal cardiomyocyte differentiation and cell cycle withdrawal are distinct processes and that terminal differentiation may not simply be due to altered expression of genes that regulate the cell cycle but could involve c-kit induced epigenetic change.


Journal of Molecular and Cellular Cardiology | 2016

DJ-1 protects the heart against ischemia–reperfusion injury by regulating mitochondrial fission

Yuuki Shimizu; Jonathan P. Lambert; Chad K. Nicholson; Joshua J. Kim; David Wolfson; Hee Cheol Cho; Ahsan Husain; Nawazish Naqvi; Li-Shen Chin; Lian Li; John W. Calvert

Recent data indicates that DJ-1 plays a role in the cellular response to stress. Here, we aimed to examine the underlying molecular mechanisms mediating the actions of DJ-1 in the heart following myocardial ischemia-reperfusion (I/R) injury. In response to I/R injury, DJ-1 KO mice displayed increased areas of infarction and worsened left ventricular function when compared to WT mice, confirming a protective role for DJ-1 in the heart. In an effort to evaluate the potential mechanism(s) responsible for the increased injury in DJ-1 KO mice, we focused on SUMOylation, a post-translational modification process that regulates various aspects of protein function. DJ-1 KO hearts after I/R injury were found to display enhanced accumulation of SUMO-1 modified proteins and reduced SUMO-2/3 modified proteins. Further analysis, revealed that the protein expression of the de-SUMOylation enzyme SENP1 was reduced, whereas the expression of SENP5 was enhanced in DJ-1 KO hearts after I/R injury. Finally, DJ-1 KO hearts were found to display enhanced SUMO-1 modification of dynamin-related protein 1, excessive mitochondrial fission, and dysfunctional mitochondria. Our data demonstrates that the activation of DJ-1 in response to myocardial I/R injury protects the heart by regulating the SUMOylation status of Drp1 and attenuating excessive mitochondrial fission.


Current Hypertension Reviews | 2012

Impact of Mast Cell Chymase on Renal Disease Progression.

Haimanot Wasse; Nawazish Naqvi; Ahsan Husain

Chymase, a serine protease found in mast cell granules, is released into the interstitium following injury or inflammation. Chymase is the primary ACE-independent pathway of angiotensin II formation, and also functions to activate TGF-beta and other promoters of extracellular matrix degradation, thereby playing a role in tissue remodeling. In the diseased kidney, chymase-containing mast cells markedly increase and their density correlates with tubulointerstitial fibrosis severity. Studies in humans support the pathologic role of chymase in diabetic nephropathy, while animal studies form the basis for the importance of increased chymase-dependent angiotensin II formation in progressive hypertensive, diabetic and inflammatory nephropathies. Moreover, humans with kidney disease express chymase in diseased blood vessels in concordance with significantly elevated plasma chymase levels. Conversely, specific chymase inhibitors attenuate angiotensin II production and renal fibrosis in animal models, suggesting their potential therapeutic benefit in human nephropathy, where chymase-containing mast cells accumulate and contribute to progressive disease.


Circulation-heart Failure | 2016

Sodium Sulfide Attenuates Ischemic-Induced Heart Failure by Enhancing Proteasomal Function in an Nrf2-Dependent Manner

Yuuki Shimizu; Chad K. Nicholson; Jonathan P. Lambert; Larry A. Barr; Nicholas Kuek; David Herszenhaut; Lin Tan; Toyoaki Murohara; Jason M. Hansen; Ahsan Husain; Nawazish Naqvi; John W. Calvert

Background—Therapeutic strategies aimed at increasing hydrogen sulfide (H2S) levels exert cytoprotective effects in various models of cardiovascular injury. However, the underlying mechanism(s) responsible for this protection remain to be fully elucidated. Nuclear factor E2–related factor 2 (Nrf2) is a cellular target of H2S and facilitator of H2S-mediated cardioprotection after acute myocardial infarction. Here, we tested the hypothesis that Nrf2 mediates the cardioprotective effects of H2S therapy in the setting of heart failure. Methods and Results—Mice (12 weeks of age) deficient in Nrf2 (Nrf2 KO; C57BL/6J background) and wild-type littermates were subjected to ischemic-induced heart failure. Wild-type mice treated with H2S in the form of sodium sulfide (Na2S) displayed enhanced Nrf2 signaling, improved left ventricular function, and less cardiac hypertrophy after the induction of heart failure. In contrast, Na2S therapy failed to provide protection against heart failure in Nrf2 KO mice. Studies aimed at evaluating the underlying cardioprotective mechanisms found that Na2S increased the expression of proteasome subunits, resulting in an increased proteasome activity and a reduction in the accumulation of damaged proteins. In contrast, Na2S therapy failed to enhance the proteasome and failed to attenuate the accumulation of damaged proteins in Nrf2 KO mice. Additionally, Na2S failed to improve cardiac function when the proteasome was inhibited. Conclusions—These findings indicate that Na2S therapy enhances proteasomal activity and function during the development of heart failure in an Nrf2-dependent manner and that this enhancement leads to attenuation in cardiac dysfunction.

Collaboration


Dive into the Nawazish Naqvi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Graham

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Li

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar

Siiri E. Iismaa

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge