Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nayara Peixoto-Silva is active.

Publication


Featured researches published by Nayara Peixoto-Silva.


Journal of Nutritional Biochemistry | 2013

Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning.

J. G. Franco; Patricia Cristina Lisboa; Natália da Silva Lima; Taline A.S. Amaral; Nayara Peixoto-Silva; Angela Castro Resende; Elaine de Oliveira; Magna Cottini Fonseca Passos; Egberto Gaspar de Moura

We hypothesized that resveratrol, a natural phytoalexin found in grapes, can prevent oxidative stress, obesity and its related disturbances in obese rats programmed by early weaning. Lactating Wistar rats were separated into two groups: early weaning (EW) - dams who were wrapped with a bandage to interrupt the lactation in the last 3 days of lactation; control - dams whose pups had free access to milk during all lactation. At the 150th day, EW offspring were randomly subdivided into EW+resveratrol (EW+Res) - resveratrol (30 mg/kg/day); EW+vehicle (EW) - rats that received 0.5% (w/v) aqueous methylcellulose. The control group received vehicle. Rats were treated by gavage daily for 30 days. EW offspring developed hyperphagia, higher body weight, visceral obesity, higher systolic (SBP) and diastolic blood pressure (DBP) (+15% and +20%, respectively; P<.05) and higher serum triglycerides (TG) and low-density lipoprotein but lower high-density lipoprotein (+55%, +33% and -13%, respectively; P<.05). Resveratrol normalized food intake, SBP and DBP and prevented obesity and dyslipidemia in EW+Res. EW rats had higher plasma and liver thiobarbituric-acid-reactive substances (TBARS) and lower plasma superoxide dismutase (SOD) and liver glutathione peroxidase activities (+51%, +18%, -58%, -31%, respectively; P<.05), and resveratrol normalized both plasma and liver TBARS and increased the activity of SOD and catalase in plasma. EW rats presented liver steatosis and higher liver TG, and resveratrol prevented these hepatic alterations. In conclusion, this study demonstrated a potential therapeutic use of resveratrol in preventing obesity and oxidative stress and reducing the risk of hypertension, dyslipidemia and steatosis in adult rats programmed by early weaning.


Journal of Nutritional Biochemistry | 2013

Oxidative stress programming in a rat model of postnatal early overnutrition — role of insulin resistance ☆ ☆☆

Ellen Paula Santos da Conceição; J. G. Franco; Elaine de Oliveira; Angela Castro Resende; Taline A.S. Amaral; Nayara Peixoto-Silva; Magna Cottini Fonseca Passos; Egberto Gaspar de Moura; Patricia Cristina Lisboa

Postnatal early overfeeding (EO) is related to later development of overweight and other metabolic disorders. As oxidative stress is implicated in most human diseases, as obesity and diabetes, we decided to study some parameters related to oxidative stress and insulin signaling in liver from EO animals in adult life. To induce EO, litter size was reduced to three pups per litter (SL: small litter) and groups with normal litter size (NL:10 pups per litter) were used as control. After weaning, rats had free access to standard diet and water. Body weight and food intake were monitored daily and offspring were killed at 180 days-old. Significant differences had P<.05 or less. As expected, SL rats had hyperphagia, higher body weight and higher visceral fat mass at weaning and adulthood. In liver, postnatal EO programmed for lower catalase (-42%), superoxide dismutase (-45%) and glutathione peroxidase (-65%) activities. The evaluation of liver injury in adult SL group showed lower nitrite content (-10%), higher liver and plasma malondialdehyde content (+25% and 1.1-fold increase, respectively). No changes of total protein bound carbonyl or Cu/Zn superoxide dismutase protein expression in liver were detected between the groups. Regarding insulin signaling pathway in liver, SL offspring showed lower IRβ (-66%), IRS1 (-50%), phospho-IRS1 (-73%), PI3-K (-30%) and Akt1 (-58%). Indeed, morphological analysis showed that SL rats presented focal areas of inflammatory cell infiltrate and lipid drops in their cytoplasm characterizing a microsteatosis. Thus, we evidenced that postnatal EO can program the oxidative stress in liver, maybe contributing for impairment of the insulin signaling.


British Journal of Nutrition | 2011

Maternal protein restriction in mice causes adverse metabolic and hypothalamic effects in the F1 and F2 generations

Nayara Peixoto-Silva; Eliete Dalla Corte Frantz; Carlos Alberto Mandarim-de-Lacerda; Alessandra Pinheiro-Mulder

Maternal protein restriction causes metabolic alterations associated with hypothalamic dysfunction. Because the consequences of metabolic programming can be passed transgenerationally, the present study aimed to assess whether maternal protein restriction alters the expression of hypothalamic neuropeptides in offspring and to evaluate hormonal and metabolic changes in male offspring from the F1 and F2 generations. Female Swiss mice (F0) were mated and fed either a normal-protein (NP group; 19 % protein) or a low-protein (LP group; 5 % protein) diet throughout gestation of the F1 generation (NP1 and LP1). At 3 months of age, F1 females were mated to produce the F2 generation (NP2 and LP2). Animals from all groups were evaluated at 16 weeks of age. LP1 offspring had significantly lower weights and shorter lengths than NP1 offspring at birth, but they underwent a phase of rapid catch-up growth. Conversely, the LP2 offspring were not significantly different from the NP2 offspring in either weight or length. At 16 weeks, no differences were found in body mass among any of the groups, although LP1 and LP2 offspring showed hypercholesterolaemia, hypertriacylglycerolaemia, hyperglycaemia, glucose intolerance, insulin resistance, increased levels of insulin, leptin and resistin, decreased endogenous leptin sensitivity, increased adiposity with elevated leptin levels and leptin resistance characterised by altered expression of neuropeptide Y and pro-opiomelanocortin without any changes in the leptin receptor Ob-Rb. We conclude that severe maternal protein restriction promotes metabolic programming in F1 and F2 male offspring due to a dysregulation of the adipoinsular axis and a state of hypothalamic leptin resistance.


Pancreas | 2012

Endocrine pancreas development: effects of metabolic and intergenerational programming caused by a protein-restricted diet.

Eliete Dalla Corte Frantz; Nayara Peixoto-Silva; Alessandra Pinheiro-Mulder

Experimental studies have demonstrated an association between low birth weight and the later development of type 2 diabetes. This association could be a result of the programming process that affects pancreatic beta-cell development due to poor fetal nutrition. This mechanism may not be limited to the first generation. In rodents, endocrine cells of the pancreas are derived from cells of the endodermal dorsal and ventral anlage that migrate and gather in clusters in a process termed isletogenesis. Islet development occurs relatively late in gestation, and islets undergo substantial remodeling immediately after birth under the regulation of a transcription factor network. Furthermore, the offspring of mice fed a protein-restricted diet exhibit a reduced pancreatic beta-cell mass at birth, lower vascularization, increased apoptosis rate, and changes in glucose metabolism in later life. Although the mechanisms underlying these relationships are unclear, it has been hypothesized that in utero nutritional conditions affect epigenetic patterns of gene transcription that persist throughout life and subsequent generations. We aimed to review the process of the formation of the endocrine pancreas in rodents, the consequences of a protein-restricted diet on offspring, and the transgenerational effects of this insult on the incidence of type 2 diabetes.


Molecular Nutrition & Food Research | 2016

Role of vitamin D in adipose tissue in obese rats programmed by early weaning and post diet calcium

Jessica Lopes Nobre; Patricia Cristina Lisboa; Nayara Peixoto-Silva; Fernanda Torres Quitete; Janaine C. Carvalho; Egberto Gaspar de Moura; Elaine de Oliveira

SCOPE Early weaning (EW) is associated with an impairment of offspring development and leads to overweight and higher 25-hydroxyvitamin D (25(OH)D) levels in adulthood, which can be corrected by calcium supplementation, potentially via vitamin D regulation of adipogenesis. METHODS AND RESULTS We examined vitamin D status in adipose tissue in EW obese rats, treated with calcium. Dams were separated into: EW- dams were wrapped with a bandage to interrupt lactation (last 3 days), and C- pups with free access to milk. At PN120, EW pups were divided in: EW- standard diet, and EWCa- calcium supplementation (10 g of calcium carbonate/kg of chow). On PN21, EW group has hypocalcemia. On PN180, EW group showed lower intestinal calbidin, higher adiposity, and 25(OH)D. In adipose tissue, Cyp27b1/1alpha-Hydroxylase, C/EBPB, PPAR-γ, IL6, TNF-A, and MCP1 were increased, while VDR and IL10 were decreased. Calcium increased calbidin, VDR and prevented adipose tissue dysfunction. EW group has a long-term effect of vitamin D on adipocyte, contributing to pro-inflammatory status and obesity. CONCLUSION We propose that in obese rat adipocytes, 1,25(OH)2 D down-regulates VDR, resulting in vitamin D resistance, characterized by higher Cyp27b1/1α-Hydroxylase and adipogenesis. Calcium therapy appears to be an outstanding strategy for weight loss and improving endocrine metabolic disorders that are obesity associated.


Food and Chemical Toxicology | 2015

Maternal nicotine exposure leads to higher liver oxidative stress and steatosis in adult rat offspring

E.P.S. Conceição; Nayara Peixoto-Silva; Cintia R. Pinheiro; Elaine de Oliveira; Egberto Gaspar de Moura; Patricia Cristina Lisboa

Early nicotine exposure causes future obesity and insulin resistance. We evaluated the long-term effect of the maternal nicotine exposure during lactation in liver oxidative status, insulin sensitivity and morphology in adult offspring. Two days after birth, osmotic minipumps were implanted in the dams: nicotine (N), 6 mg/kg/day for 14 days or saline (C). Offspring were killed at 180 days. Protein content of superoxide dismutase, glutathione peroxidase, catalase, nitrotyrosine, 4HNE, IRS1, Akt1 and PPARs were measured. MDA, bound protein carbonyl content, SOD, GPx and catalase activities were determined in liver and plasma. Hepatic morphology and triglycerides content were evaluated. Albumin and bilirubin were determined. In plasma, N offspring had higher catalase activity, and SOD/GPx ratio, albumin and bilirubin levels but lower MDA content. In liver, they presented higher MDA and 4HNE levels, bound protein carbonyl content, SOD activity but lower GPx activity. N offspring presented an increase of lipid droplet, higher triglyceride content and a trend to lower PPARα in liver despite unchanged insulin signaling pathway. Early nicotine exposure causes oxidative stress in liver at adulthood, while protect against oxidative stress at plasma level. In addition, N offspring develop liver microsteatosis, which is related to oxidative stress but not to insulin resistance.


Life Sciences | 2014

Does bromocriptine play a role in decreasing oxidative stress for early weaned programmed obesity

Nayara Peixoto-Silva; Ellen Paula Santos da Conceição; Janaine C. Carvalho; Natália da Silva Lima; José Firmino Nogueira-Neto; Elaine de Oliveira; Egberto Gaspar de Moura; Patricia Cristina Lisboa

AIMS Studies have demonstrated that early weaning can promote metabolic syndrome during adulthood and that obesity increases oxidative stress. Thus, we aimed to evaluate redox status in a pharmacological early weaning rodent model programmed for metabolic syndrome at adulthood. MAIN METHODS Lactating dams were randomly assigned into 2 groups: the early weaning group (BRO), which was treated intraperitoneally with bromocriptine (1 mg/day) to inhibit prolactin secretion for the last 3 days of lactation, and the control group (C), which received the BRO diluent for the same time period. The offspring were killed at 90 (PN90) and 180 (PN180) days after birth. KEY FINDINGS Early weaning induced greater visceral adiposity and dyslipidemia. At PN90, the BRO offspring showed glucose intolerance with normoinsulinemia and increased plasma and liver superoxide dismutase, and liver glutathione peroxidase activities, which reduced the liver malondialdehyde but not the increased plasma malondialdehyde levels. However, the BRO offspring showed insulin resistance at PN180 and increased plasma glutathione peroxidase, liver superoxide dismutase, and catalase activities. These changes reduced the plasma and liver malondialdehyde levels, which aided in hepatocyte architecture preservation. Additionally, we observed that sirtuin 1 was overexpressed in the BRO group at PN90, but the increased expression was not maintained through PN180, which suggests unfavorable metabolic conditions in the older offspring. SIGNIFICANCE Despite the observed obesity and glucose homeostasis dysfunction, our data suggest that the early weaning programming induced by bromocriptine can improve the offsprings redox status and may prevent liver damage during adulthood.


Molecular Nutrition & Food Research | 2015

Anti-obesogenic effects of calcium prevent changes in the GLP-1 profile in adult rats primed by early weaning.

Fernanda Torres Quitete; Jessica Lopes Nobre; Nayara Peixoto-Silva; Egberto Gaspar de Moura; Patricia Cristina Lisboa; Elaine de Oliveira

SCOPE Gut peptides regulate appetite and adipogenesis. Early weaning (EW) leads to later development of obesity that can be prevented by calcium supplementation. We evaluated gut peptides that may have a role in the establishment of this dysfunction. METHODS AND RESULTS At birth, lactating Wistar rats were separated in: EW, lactating rats involved with a bandage interrupting the lactation during the last 4 days of standard lactation, and C (control) dams whose pups had free access to milk during throughout lactation. At 120 days old, half of EW group received calcium supplementation (EWCa); EW and C received standard diet. At 21 days old, EW presented higher glucagon-like peptide 1 (GLP-1) in plasma and glucagon-like peptide 1 receptor (GLP1-R) in adipose tissue and hypothalamus, but lower GLP-1 and GLP1-R in the gut. At 180 days old, GLP-1 response to food intake was blunted in EW and restored by calcium. GLP-1 in the gut was lower in EW and its receptor was lower in adipose tissue, and GLP1-R was higher in the gut of calcium EW group. CONCLUSION Thus, EW had short- and long-term effects upon GLP-1 profile, which may have contributed to obesity development, hyperphagia, and insulin resistance due to its adipogenic and appetite control roles. Calcium supplementation was able to prevent most of the changes in GLP-1 caused by EW.


Hormone and Metabolic Research | 2014

Resveratrol prevents hyperleptinemia and central leptin resistance in adult rats programmed by early weaning.

J. G. Franco; Patricia Cristina Lisboa; N. da Silva Lima; Nayara Peixoto-Silva; Lígia de Albuquerque Maia; Elaine de Oliveira; M. C. F. Passos; E. G. de Moura

We have previously shown that early weaning in rats increases the risk of obesity and insulin resistance at adulthood, and leptin resistance can be a prime factor leading to these changes. Resveratrol is reported to decrease oxidative stress, insulin resistance, and cardiovascular risk. However, there is no report about its effect on leptin resistance. Thus, in this study we have evaluated resveratrol-preventing effect on the development of visceral obesity, insulin, and leptin resistance in rats programmed by early weaning. To induce early weaning, lactating dams were separated into 2 groups: early weaning (EW)--dams were wrapped with a bandage to interrupt lactation in the last 3 days of lactation and control (C)--dams whose pups had free access to milk during throughout lactation period (21 days). At 150 days-old, EW offspring were subdivided into 2 groups: EW+res--treated with resveratrol solution (30 mg/kg BW/day) or EW--receiving equal volume of vehicle solution, both given by gavage during 30 days. Control group received vehicle solution. Resveratrol prevented the higher body weight, hyperphagia, visceral obesity, hyperleptinemia, hyperglycemia, insulin resistance, and hypoadiponectinemia at adulthood in animals that were early weaned. Leptin resistance, associated with lower JAK2 and pSTAT3 and higher NPY in hypothalamus of EW rats were also normalized by resveratrol. The present results suggest that resveratrol is useful as therapeutic tool in treating obesity, mainly because it prevents the development of central leptin resistance.


British Journal of Nutrition | 2015

Early weaning by maternal prolactin inhibition leads to higher neuropeptide Y and astrogliosis in the hypothalamus of the adult rat offspring.

V. Younes-Rapozo; Egberto Gaspar de Moura; Alex C. Manhães; Nayara Peixoto-Silva; Elaine de Oliveira; Patricia Cristina Lisboa

The suppression of prolactin production with bromocriptine (BRO) in the last 3 d of lactation reduces milk yield (early weaning) and increases the transfer of leptin through the milk, causing hyperleptinaemia in pups. In adulthood, several changes occur in the offspring as a result of metabolic programming, including overweight, higher visceral fat mass, hypothyroidism, hyperglycaemia, insulin resistance, hyperleptinaemia and central leptin resistance. In the present study, we investigated whether overweight rats programmed by early weaning with maternal BRO treatment have hypothalamic alterations in adulthood. We analysed the expression of neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), pro-opiomelanocortin (POMC) and α-melanocyte-stimulating hormone (α-MSH) by immunohistochemistry in the following hypothalamic nuclei: medial and lateral arcuate nucleus (ARC); paraventricular nucleus (PVN); lateral hypothalamus (LH). Additionally, we sought to determine whether these programmed rats exhibited hypothalamic inflammation as indicated by astrogliosis. NPY immunostaining showed a denser NPY-positive fibre network in the ARC and PVN (+82% in both nuclei) of BRO offspring. Regarding the anorexigenic neuropeptides, no difference was found for CART, POMC and α-MSH. The number of astrocytes was higher in all the nuclei of BRO rats. The fibre density of glial fibrillary acidic protein was also increased in both medial and lateral ARC (6·06-fold increase and 9·13-fold increase, respectively), PVN (5·75-fold increase) and LH (2·68-fold increase) of BRO rats. We suggest that early weaning has a long-term effect on the expression of NPY as a consequence of developmental plasticity, and the presence of astrogliosis indicates hypothalamic inflammation that is closely related to overweight and hyperleptinaemia observed in our model.

Collaboration


Dive into the Nayara Peixoto-Silva's collaboration.

Top Co-Authors

Avatar

Patricia Cristina Lisboa

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Egberto Gaspar de Moura

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Elaine de Oliveira

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Janaine C. Carvalho

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Alex C. Manhães

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Cintia R. Pinheiro

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Jessica Lopes Nobre

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

J. G. Franco

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Natália da Silva Lima

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

E.P.S. Conceição

Rio de Janeiro State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge