Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nayeli Alva-Murillo is active.

Publication


Featured researches published by Nayeli Alva-Murillo.


Veterinary Microbiology | 2009

Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis

José E. Barboza-Corona; Norma M. de la Fuente-Salcido; Nayeli Alva-Murillo; Alejandra Ochoa-Zarzosa; Joel E. López-Meza

Antimicrobial therapy is a useful tool to control bovine mastitis caused by Staphylococcus aureus, as consequence an increase in staphylococci resistant cases has been registered. Alternative strategies are desirable and bacteriocins represent attractive control agents to prevent bovine mastitis. The aim of this work was to evaluate the activity of five bacteriocins synthesized by Bacillus thuringiensis against S. aureus isolates associated to bovine mastitis. Fifty S. aureus isolates were recovered from milk composite samples of 26 Holstein lactating cows from one herd during September 2007 to February 2008 in México and susceptibility of those isolates to 12 antibiotics and 5 bacteriocins from B. thuringiensis was evaluated. S. aureus isolates were mainly resistant to penicillin (92%), dicloxacillin (86%), ampicillin (74%) and erythromycin (74%); whereas susceptibility to gentamicin, trimethoprim and tetracycline was detected at, respectively, 92%, 88%, and 72%. All S. aureus isolates showed susceptibility to the five bacteriocins synthesized by B. thuringiensis, mainly to morricin 269 and kurstacin 287 followed by kenyacin 404, entomocin 420 and tolworthcin 524. Our results showed that S. aureus isolates had differences in the antimicrobial resistance patterns and were susceptible to bacteriocins produced by B. thuringiensis, which could be useful as an alternative method to control bovine mastitis.


Veterinary Microbiology | 2012

Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression

Nayeli Alva-Murillo; Alejandra Ochoa-Zarzosa; Joel E. López-Meza

Short chain fatty acids (SCFAs) are critical nutrients for ruminants and are mainly obtained from bacterial fermentation of carbohydrates. In addition to their nutrimental function, SCFAs have antimicrobial and anti-inflammatory properties, as well as immunomodulatory roles. It has been reported that sodium butyrate reduces Staphylococcus aureus internalization into bovine mammary epithelial cells (bMEC) and modulates antimicrobial peptide mRNA expression. Nevertheless, it has not been evaluated if sodium propionate (NaP) and sodium hexanoate (NaH) have similar actions. Since they are present in milk, the aim of this study was to determinate the effect of both SCFAs on S. aureus internalization into bMEC and to evaluate their effects on modulation of innate immunity elements. Our data showed that both SCFAs (0.25-5mM) did not affect S. aureus growth and bMEC viability. By gentamicin protection assay (MOI 30:1) we showed that NaP and NaH reduced bacterial internalization into bMEC, which ranged 27-55% and 39-65%, respectively, in relation to non treated controls. Also, both SCFAs up-regulate tracheal antimicrobial peptide (TAP) mRNA expression; however, bovine neutrophil β-defensin 5 (BNBD5) mRNA expression was not modified or was down-regulated. In addition, TAP and BNBD5 expression was up-regulated by S. aureus. Finally, the decrease in bacterial internalization under SCFA treatments is not related to nitric oxide production. In conclusion, NaP and NaH decrease S. aureus internalization into bMEC and modulate TAP gene expression, which may be related to the reduction in bacterial internalization.


Veterinary Microbiology | 2012

Cholecalciferol (vitamin D) differentially regulates antimicrobial peptide expression in bovine mammary epithelial cells: Implications during Staphylococcus aureus internalization

Ana Dolores Téllez-Pérez; Nayeli Alva-Murillo; Alejandra Ochoa-Zarzosa; Joel E. López-Meza

Vitamin D has immunomodulatory functions regulating the expression of host defense genes. The aim of this study was to determine the effect of cholecalciferol (vitamin D3) on S. aureus internalization into bovine mammary epithelial cells (bMEC) and antimicrobial peptide (AP) mRNA expression. Cholecalciferol (1-200 nM) did not affect S. aureus growth and bMEC viability; but it reduced bacterial internalization into bMEC (15-74%). Also, bMEC showed a basal expression of all AP genes evaluated, which were induced by S. aureus. Cholecalciferol alone or together with bacteria diminished tracheal antimicrobial peptide (TAP) and bovine neutrophil β-defensin (BNBD) 5 mRNA expression; while alone induced the expression of lingual antimicrobial peptide (LAP), bovine β-defensin 1 (DEFB1) and bovine psoriasin (S100A7), which was inhibited in the presence of S. aureus. This compound (50 nM) increased BNBD10 mRNA expression coinciding with the greatest reduction in S. aureus internalization. Genes of vitamin D pathway (25-hydroxylase and 1 α-hydroxylase) show basal expression, which was induced by cholecalciferol or bacteria. S. aureus induced vitamin D receptor (VDR) mRNA expression, but not in the presence of cholecalciferol. In conclusion, cholecalciferol can reduce S. aureus internalization and differentially regulates AP expression in bMEC. Thus, vitamin D could be an effective innate immunity modulator in mammary gland, which leads to a better defense against bacterial infection.


BioMed Research International | 2014

Nonprofessional Phagocytic Cell Receptors Involved in Staphylococcus aureus Internalization

Nayeli Alva-Murillo; Joel E. López-Meza; Alejandra Ochoa-Zarzosa

Staphylococcus aureus is a successful human and animal pathogen. The majority of infections caused by this pathogen are life threatening, primarily because S. aureus has developed multiple evasion strategies, possesses intracellular persistence for long periods, and targets the skin and soft tissues. Therefore, it is very important to understand the mechanisms employed by S. aureus to colonize and proliferate in these cells. The aim of this review is to describe the recent discoveries concerning the host receptors of nonprofessional phagocytes involved in S. aureus internalization. Most of the knowledge related to the interaction of S. aureus with its host cells has been described in professional phagocytic cells such as macrophages. Here, we showed that in nonprofessional phagocytes the α5β1 integrin host receptor, chaperons, and the scavenger receptor CD36 are the main receptors employed during S. aureus internalization. The characterization and identification of new bacterial effectors and the host cell receptors involved will undoubtedly lead to new discoveries with beneficial purposes.


BioMed Research International | 2013

Effects of Sodium Octanoate on Innate Immune Response of Mammary Epithelial Cells during Staphylococcus aureus Internalization

Nayeli Alva-Murillo; Alejandra Ochoa-Zarzosa; Joel E. López-Meza

Bovine mammary epithelial cells (bMECs) are capable of initiating an innate immune response to invading bacteria. Short chain fatty acids can reduce Staphylococcus aureus internalization into bMEC, but it has not been evaluated if octanoic acid (sodium octanoate, NaO), a medium chain fatty acid (MCFA), has similar effects. In this study we determined the effect of NaO on S. aureus internalization into bMEC and on the modulation of innate immune elements. NaO (0.25–2 mM) did not affect S. aureus growth and bMEC viability, but it differentially modulated bacterial internalization into bMEC, which was induced at 0.25–0.5 mM (~60%) but inhibited at 1-2 mM (~40%). Also, bMEC showed a basal expression of all the innate immune genes evaluated, which were induced by S. aureus. NaO induced BNBD4, LAP, and BNBD10 mRNA expression, but BNBD5 and TNF-α were inhibited. Additionally, the pretreatment of bMEC with NaO inhibited the mRNA expression induction generated by bacteria which coincides with the increase in internalization; only TAP and BNDB10 showed an increase in their expression; it coincides with the greatest effect on the reduction of bacterial internalization. In conclusion, NaO exerts a dual effect on S. aureus internalization in bMEC and modulates elements of innate immune response.


Molecular Immunology | 2015

The activation of the TLR2/p38 pathway by sodium butyrate in bovine mammary epithelial cells is involved in the reduction of Staphylococcus aureus internalization

Nayeli Alva-Murillo; Ivan Medina-Estrada; Marisol Báez-Magaña; Alejandra Ochoa-Zarzosa; Joel E. López-Meza

Staphylococcus aureus is an etiological agent of human and animal diseases, and it is able to internalize into non-professional phagocytic cells (i.e. bovine mammary epithelial cells, bMECs), which is an event that is related to chronic and recurrent infections. bMECs contribute to host innate immune responses (IIR) through TLR pathogen recognition, whereby TLR2 is the most relevant for S. aureus. In a previous report, we showed that sodium butyrate (NaB, 0.5mM), which is a short chain fatty acid (SCFA), reduced S. aureus internalization into bMECs by modulating their IIR. However, the molecular mechanism of this process has not been described, which was the aim of this study. The results showed that the TLR2 membrane abundance (MA) and mRNA expression were induced by 0.5mM NaB ∼1.6-fold and ∼1.7-fold, respectively. Additionally, 0.5mM NaB induced p38 phosphorylation, but not JNK1/2 or ERK1/2 phosphorylation in bMECs, which reached the baseline when the bMECs were S. aureus-challenged. Additionally, bMECs that were treated with 0.5mM NaB (24h) showed activation of 8 transcriptional factors (AP-1, E2F-1, FAST-1, MEF-1, EGR, PPAR, ER and CBF), which were partially reverted when the bMECs were S. aureus-challenged. Additionally, 0.5mM NaB (24h) up-regulated mRNA expression of the antimicrobial peptides, TAP (∼4.8-fold), BNBD5 (∼3.2-fold) and BNBD10 (∼2.6-fold). Notably, NaB-treated and S. aureus-challenged bMECs increased the mRNA expression of all of the antimicrobial peptides that were evaluated, and this was evident for LAP and BNBD5. In the NaB-treated bMECs, we did not detect significant expression changes for IL-1β and IL-6 and only TNF-α, IL-10 and IL-8 were induced. Interestingly, the NaB-treated and S. aureus-challenged bMECs maintained the anti-inflammatory response that was induced by this SCFA. In conclusion, our results suggest that 0.5mM NaB activates bMECs via TLR2/p38, which leads to improved antimicrobial defense before/after pathogen invasion, and NaB may exert anti-inflammatory effects during infection.


Microbial Pathogenesis | 2015

Non-classical effects of prolactin on the innate immune response of bovine mammary epithelial cells: Implications during Staphylococcus aureus internalization.

Ivan Medina-Estrada; Nayeli Alva-Murillo; Joel E. López-Meza; Alejandra Ochoa-Zarzosa

Staphylococcus aureus has the ability to invade mammary epithelial cells (bMECs) causing mastitis. This event depends primarily on the α5β1 integrin in the host cell. In addition, bMECs are a target for the hormone prolactin (PRL), which can regulate β1 integrin-dependent actions related to differentiation and lactation. Previously, we demonstrated that bovine PRL (bPRL, 5 ng/ml) stimulates S. aureus internalization into bMECs. TLR2 is important during S. aureus infections, but its activation by PRL has not yet been established. The objective of this study was to determine the role of α5β1 integrin and TLR2 during S. aureus internalization into bMECs stimulated with bPRL. We demonstrated that the prolactin-stimulated internalization of S. aureus decreases in response to the blockage of α5β1 integrin (∼ 80%) and TLR2 (∼ 80%). bPRL increases the membrane abundance (MA) of α5β1 integrin (∼ 20%) and induces TLR2 MA (∼ 2-fold). S. aureus reduces the α5β1 integrin MA in bMECs treated with bPRL (∼ 75%) but induces TLR2 MA in bMECs (∼ 3-fold). Bacteria and bPRL did not modify TLR2 MA compared with the hormone alone. S. aureus induces the activation of the transcription factor AP-1, which was inhibited in bMECs treated with bPRL and infected. In general, bPRL induces both pro- and anti-inflammatory responses in bMECs, which are abated in response to bacterial challenge. Interestingly, the canonical Stat-5 transcription factor was not activated in the challenged bMECs and/or treated with bPRL. Taken together, these results support novel functions of prolactin as a modulator of the innate immune response that do not involve the classical prolactin pathway.


Cellular Immunology | 2012

Expression of antimicrobial peptides by bovine endothelial cells.

Nayeli Alva-Murillo; Ana Dolores Téllez-Pérez; Eduardo Sagrero-Cisneros; Joel E. López-Meza; Alejandra Ochoa-Zarzosa

In this work, we explore if Gram-positive bacteria as Staphylococcus aureus or Gram-negative bacteria components as LPS, can induce the expression of seven antimicrobial peptides (AP) in an immortalized bovine umbilical vein endothelial cell line (BUVEC). By qPCR we determined the constitutive expression of all the AP evaluated. The stimulation with S. aureus or LPS induced the expression of lingual antimicrobial peptide (LAP), bovine β-defensin 1 (DEFB1) and bovine neutrophil β-defensin 4 (BNBD4). This expression was regulated by the autocrine production of tumor necrosis factor-α (TNF-α), indicating that bovine endothelial cells (EC) can play a more active role during infection.


Frontiers in Cellular and Infection Microbiology | 2017

Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization

Nayeli Alva-Murillo; Alejandra Ochoa-Zarzosa; Joel E. López-Meza

Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate immune response (IIR). However, the molecular mechanisms have not been described, which was the aim of this study. The results showed that α5β1 integrin membrane abundance (MA) was increased in 0.25 mM NaO-treated cells, but TLR2 or CD36 MA was not modified. When these receptors were blocked individually, 0.25 mM NaO-increased S. aureus internalization was notably reduced. Interestingly, in this condition, the IIR of the bMECs was impaired because MAPK (p38, JNK, and ERK1/2) phosphorylation and the activation of transcription factors related to these pathways were decreased. In addition, the 1 mM NaO treatment induced TLR2 MA, but neither the integrin nor CD36 MA was modified. The reduction in S. aureus internalization induced by 1 mM NaO was increased further when TLR2 was blocked. In addition, the phosphorylation levels of the MAPKs increased, and 13 transcriptional factors related to the IIR were slightly activated (CBF, CDP, c-Myb, AP-1, Ets-1/Pea-3, FAST-1, GAS/ISRE, AP-2, NFAT-1, OCT-1, RAR/DR-5, RXR/DR-1, and Stat-3). Moreover, the 1 mM NaO treatment up-regulated gene expression of IL-8 and RANTES and secretion of IL-1β. Notably, when 1 mM NaO-treated bMECs were challenged with S. aureus, the gene expression of IL-8 and IL-10 increased, while IL-1β secretion was reduced. In conclusion, our results showed that α5β1 integrin, TLR2 and CD36 are involved in 0.25 mM NaO-increased S. aureus internalization in bMECs. In addition, 1 mM NaO activates bMECs via the TLR2 signaling pathways (p38, JNK, and ERK1/2), which improves IIR before S. aureus invasion. Additionally, NaO (1 mM) might exert anti-inflammatory effects after bacterial internalization.


Microbial Pathogenesis | 2014

Modulation of the inflammatory response of bovine mammary epithelial cells by cholecalciferol (vitamin D) during Staphylococcus aureus internalization.

Nayeli Alva-Murillo; Ana Dolores Téllez-Pérez; Ivan Medina-Estrada; Cleto Álvarez-Aguilar; Alejandra Ochoa-Zarzosa; Joel E. López-Meza

Collaboration


Dive into the Nayeli Alva-Murillo's collaboration.

Top Co-Authors

Avatar

Joel E. López-Meza

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Alejandra Ochoa-Zarzosa

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Ana Dolores Téllez-Pérez

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Ivan Medina-Estrada

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amada Díaz-Magaña

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Carlos Cervantes

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Cleto Álvarez-Aguilar

Mexican Social Security Institute

View shared research outputs
Top Co-Authors

Avatar

Eduardo Sagrero-Cisneros

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge