Nayoun Kim
Catholic University of Korea
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nayoun Kim.
The Korean Journal of Internal Medicine | 2013
Nayoun Kim; Seok-Goo Cho
Mesenchymal stem cells (MSCs) are self-renewing, multipotent progenitor cells with multilineage potential to differentiate into cell types of mesodermal origin, such as adipocytes, osteocytes, and chondrocytes. In addition, MSCs can migrate to sites of inflammation and exert potent immunosuppressive and anti-inflammatory effects through interactions between lymphocytes associated with both the innate and adaptive immune system. Along with these unique therapeutic properties, their ease of accessibility and expansion suggest that use of MSCs may be a useful therapeutic approach for various disorders. In the clinical setting, MSCs are being explored in trials of various conditions, including orthopedic injuries, graft versus host disease following bone marrow transplantation, cardiovascular diseases, autoimmune diseases, and liver diseases. Furthermore, genetic modification of MSCs to overexpress antitumor genes has provided prospects for clinical use as anticancer therapy. Here, we highlight the currently reported uses of MSCs in clinical trials and discuss their efficacy as well as their limitations.
Annals of Hematology | 2013
Nayoun Kim; Keon-Il Im; Jung-Yeon Lim; Eun-Joo Jeon; Young-Sun Nam; Eun-Jung Kim; Seok-Goo Cho
Mesenchymal stem cells (MSCs) have emerged as a therapeutic approach in a range of medical fields, including regenerative medicine, cancer, autoimmune diseases, and inflammatory diseases, because of their unique properties of tissue repair and major histocompatibility complex-unmatched immunosuppression. Because both in vitro and in vivo findings demonstrate that MSCs possess potent immunoregulatory functions, there has been increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation, especially in the prevention and treatment of graft-versus-host disease (GVHD). GVHD is a major cause of transplantation-related mortality, and conventional immunosuppressants frequently fail to treat patients suffering from GVHD. Following Ringden’s pilot study that used third-party MSCs to treat a steroid-refractory GVHD patient, MSCs have created growing interest as a therapeutic agent for GVHD. There have been further studies which demonstrated the potentials of MSC treatment in steroid-refractory GVHD, de novo GVHD, and also GVHD prevention. However, MSCs still present limitations. The need for MSCs to be “licensed” in a pro-inflammatory environment, especially in the presence of interferon gamma, allows only a narrow window for their administration. Thus, their effects have been less clear as a preventive measure before the inflammatory environment of GVHD is established and also when administered during a chronic setting where MSCs may be alternatively licensed. In this review, we focus on the immunomodulatory properties of MSCs and their effects in relation to GVHD. Given the efficacy of MSCs in murine models of GVHD and their safety in clinical trials, it is crucial that larger clinical trials are conducted and further modifications are investigated.
International journal of stem cells | 2015
Nayoun Kim; Seok-Goo Cho
Mesenchymal stem cells (MSCs) have rapidly been applied in a broad field of immune-mediated disorders since the first successful clinical use of MSCs for treatment of graft-versus-host disease. Despite the lack of supporting data, expectations that MSCs could potentially treat most inflammatory conditions led to rushed application and development of commercialized products. Today, both pre-clinical and clinical studies present mixed results for MSC therapy and the discrepancy between expected and actual efficacy of MSCs in various diseases has evoked a sense of discouragement. Therefore, we believe that MSC therapy may now be at a critical milestone for re-evaluation and re-consideration. In this review, we summarize the current status of MSC-based clinical trials and focus on the discrepancy between expected and actual outcome of MSC therapy from bench to bedside. Importantly, we discuss the underlying limitations of MSCs and suggest a new guideline for MSC therapy in hopes of improving their therapeutic efficacy.
Experimental and Molecular Medicine | 2013
Eun-Jung Kim; Nayoun Kim; Seok-Goo Cho
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT.
Cell Transplantation | 2014
Jung-Yeon Lim; Min-Jung Park; Keon-Il Im; Nayoun Kim; Eun-Joo Jeon; Eun-Jung Kim; Mi-La Cho; Seok-Goo Cho
Mesenchymal stem cells (MSCs) have been considered to be an ideal cellular source for graft-versus-host disease (GVHD) treatment due to their unique properties, including tissue repair and major histocompatibility complex (MHC)-unmatched immunosuppression. However, preclinical and clinical data have suggested that the immunomodulatory activity of MSCs is not as effective as previously expected. This study was performed to investigate whether the immunomodulatory capacity of MSCs could be enhanced by combination infusion of regulatory T (Treg) cells to prevent acute GVHD (aGVHD) following MHC-mismatched bone marrow transplantation (BMT). For GVHD induction, lethally irradiated BALB/c (H-2d) mice were transplanted with bone marrow cells (BMCs) and spleen cells of C57BL/6 (H-2b) mice. Recipients were injected with cultured recipient-derived MSCs, Treg cells, or MSCs plus Treg cells (BMT + day 0, 4). Systemic infusion of MSCs plus Treg cells improved clinicopathological manifestations and survival in the aGVHD model. Culture of MSCs plus Treg cells increased the population of Foxp3+ Treg cells and suppressed alloreactive T-cell proliferation in vitro. These therapeutic effects were associated with more rapid expansion of donor-type CD4+CD25+Foxp3+ Treg cells and CD4+IL-4+ type 2 T-helper (Th2) cells in the early posttransplant period. Furthermore, MSCs plus Treg cells regulated CD4+IL-17+ Th17 cells, as well as CD4+IFN-γ + Th1 cells. These data suggest that the combination therapy with MSCs plus Treg cells may have cooperative effects in enhancing the immunomodulatory activity of MSCs and Treg cells in aGVHD. This may lead to development of new therapeutic approaches to clinical allogeneic hematopoietic cell transplantation.
Scientific Reports | 2016
Jung-Yeon Lim; Keon-Il Im; Eun-Sol Lee; Nayoun Kim; Young-Sun Nam; Young-Woo Jeon; Seok-Goo Cho
Mesenchymal stem cells (MSCs) possess immunomodulatory properties and have potential, however, there have been conflicting reports regarding their effects in rheumatoid arthritis (RA), which causes inflammation and destruction of the joints. Through a comparative analysis of regulatory T (Treg) and IL-10-producing type 1 regulatory T (Tr1) cells, we hypothesized that Tr1 cells enhance the immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy may exert synergistic immunomodulatory effects in an experimental animal model of rheumatoid arthritis (RA). A combination of MSCs and Tr1 cells prevented the development of destructive arthritis compared to single cell therapy. These therapeutic effects were associated with an increase in type II collagen (CII)-specific CD4+CD25+Foxp3+ Treg cells and inhibition of CII-specific CD4+IL-17+ T cells. We observed that Tr1 cells produce high levels of IL-10-dependent interferon (IFN)-β, which induces toll-like receptor (TLR) 3 expression in MSCs. Moreover, induction of indoleamine 2,3-dioxygenase (IDO) by TLR3 involved an autocrine IFN-β that was dependent on STAT1 signaling. Furthermore, we observed that production of IFN-β and IL-10 in Tr1 cells synergistically induces IDO in MSCs through the STAT1 pathway. These findings suggest co-administration of MSCs and Tr1 cells to be a novel therapeutic modality for clinical autoimmune diseases.
Journal of Immunology | 2015
Keon-Il Im; Nayoun Kim; Jung-Yeon Lim; Young-Sun Nam; Eun-Sol Lee; Eun-Jung Kim; Hyoung Jin Kim; Soon Ha Kim; Seok-Goo Cho
Graft-versus-host disease (GVHD) is a major complication associated with allogeneic hematopoietic stem cell transplantation. Despite the prominent role of the adaptive immune system, the importance of controlling the innate immune system in the pathogenesis of GVHD has recently been rediscovered. High-mobility group box 1 (HMGB1) is a crucial damage-associated molecular pattern signal that functions as a potent innate immune mediator in GVHD. In the present study, we investigated treatment of experimental GVHD through HMGB1 blockade using the compound cyclopentylamino carboxymethylthiazolylindole (NecroX)-7. Treated animals significantly attenuated GVHD-related mortality and inhibited severe tissue damage. These protective effects correlated with the decrease in HMGB1 expression and lower levels of reactive oxidative stress. Additionally, NecroX-7 inhibited the HMGB1-induced release of TNF and IL-6, as well as the expression of TLR-4 and receptor for advanced glycation end products. We also observed increased regulatory T cell numbers, which may be associated with regulation of differentiation signals independent of HMGB1. Taken together, these data indicate that NecroX-7 protects mice against lethal GVHD by reciprocal regulation of regulatory T/Th1 cells, attenuating systemic HMGB1 accumulation and inhibiting HMGB1-mediated inflammatory response. Our results indicate the possibility of a new use for a clinical drug that is effective for the treatment of GVHD.
Stem Cells and Development | 2014
Keon-Il Im; Min-Jung Park; Nayoun Kim; Jung-Yeon Lim; Hyun-Sil Park; Sung-Hee Lee; Young-Sun Nam; Eun-Sol Lee; Jung-Ho Lee; Mi-La Cho; Seok-Goo Cho
Establishment of mixed chimerism is an ideal approach to induce donor-specific tolerance while expanding its potential in various clinical settings. Despite the developments in partial conditioning regimens, improvements are still needed in reducing toxicity and bone marrow transplantation-related complications. Recently, cell-based therapies, including mesenchymal stem cells (MSCs), have been incorporated in establishing noncytoreductive mixed chimerism protocols; however, its efficacy is only partial and shows reversed immunosuppressive properties. This study demonstrates a novel approach to induce mixed chimerism and tolerance through combinatory cell-based immune modulation (CCIM) of MSCs and regulatory T cells (Tregs). We hypothesize that the interaction between these cells may lead to greater inhibition of host immune responses. Compared with single cell therapy, CCIM induced a higher engraftment rate and robust donor-specific tolerance to skin allografts across full major histocompatibility complex barriers. These regulatory effects were associated with inhibition of natural killer cell cytotoxic activity, CD4(+)IL-17(+) cells, memory B cells, plasma cells, and immunoglobulin production levels along with increased frequencies of CD4(+)Foxp3(+) cells, IL-10-producing mature B cells, and myeloid-derived suppressor cells. Furthermore, CCIM was able to regulate mortality in a graft-versus-host disease model through reciprocal regulation of Treg/Th17. Taken together, we suggest CCIM as a clinically applicable strategy for facilitating the induction of mixed chimerism and permanent tolerance.
Molecular Therapy | 2015
Seok-Goo Cho; Nayoun Kim; Hyun-Jung Sohn; Suk Kyeong Lee; Sang Taek Oh; Hyun-Il Cho; Hyeon Woo Yim; Seung Eun Jung; Gyeongsin Park; Joo Hyun Oh; Byung-Ock Choi; Sung Won Kim; Soo Whan Kim; Nak Gyun Chung; Jong-Wook Lee; Young Seon Hong; Tai-Gyu Kim
Extranodal NK/T-cell lymphoma (ENKTCL) is associated with latent Epstein-Barr virus (EBV) infection and frequent relapse even after complete response (CR) to intensive chemotherapy and radiotherapy. The expression of EBV proteins in the tumor provides targets for adoptive immunotherapy with antigen-specific cytotoxic T cells (CTL). To evaluate the efficacy and safety of EBV latent membrane protein (LMP)-1 and LMP-2a-specific CTLs (LMP1/2a CTLs) stimulated with LMP1/2a RNA-transferred dendritic cells, we treated 10 ENKTCL patients who showed complete response to induction therapy. Patients who completed and responded to chemotherapy, radiotherapy, and/or high-dose therapy followed by stem cell transplantation (HDT/SCT) were eligible to receive eight doses of 2 × 107 LMP1/2a CTLs/m2. Following infusion, there were no immediate or delayed toxicities. The 4-year overall survival (OS) and progression-free survival (PFS) were 100%, and 90% (95% CI: 71.4 to 100%) respectively with a median follow-up of 55·5 months. Circulating IFN-γ secreting LMP1 and LMP2a-specific T cells within the peripheral blood corresponded with decline in plasma EBV DNA levels in patients. Adoptive transfer of LMP1/2a CTLs in ENKTCL patients is a safe and effective postremission therapeutic approach. Further randomized studies will be needed to define the role of EBV-CTLs in preventing relapse of ENKTCL.
PLOS ONE | 2013
Jung Ho Lee; Eun-Joo Jeon; Nayoun Kim; Young-Sun Nam; Keon-Il Im; Jung-Yeon Lim; Eun-Jung Kim; Mi-La Cho; Ki Taik Han; Seok-Goo Cho
Mesenchymal stromal cells (MSCs) are seen as an ideal source of cells to induce graft acceptance; however, some reports have shown that MSCs can be immunogenic rather than immunosuppressive. We speculate that the immunomodulatory effects of regulatory T cells (Tregs) can aid the maintenance of immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy can have synergistic immunomodulatory effects on allograft rejection. After preconditioning with Fludarabine, followed by total body irradiation and anti-asialo-GM-1(ASGM-1), tail skin grafts from C57BL/6 (H-2kb) mice were grafted onto the lateral thoracic wall of BALB/c (H-2kd) mice. Group A mice (control group, n = 9) did not receive any further treatment after preconditioning, whereas groups B and C (n = 9) received cell therapy with MSCs or Tregs, respectively, on days −1, +6 and +13 relative to the skin transplantation. Group D (n = 10) received cell therapy with MSCs and Tregs on days −1, +6 and +13. Cell suspensions were obtained from the spleens of five randomly chosen mice from each group on day +7, and the immunomodulatory effects of the cell therapy were evaluated by flow cytometry and real-time PCR. Our results show that allograft survival was significantly longer in group D compared to the control group (group A). Flow cytometric analysis and real-time PCR for splenocytes revealed that the Th2 subpopulation in group D increased significantly compared to the group B. Also, the expression of Foxp3 and STAT 5 increased significantly in group D compared to the conventional cell therapy groups (B and C). Taken together, these data suggest that a combined cell therapy approach with MSCs and Tregs has a synergistic effect on immunoregulatory function in vivo, and might provide a novel strategy for improving survival in allograft transplantation.