Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nazanin Khalili is active.

Publication


Featured researches published by Nazanin Khalili.


Proceedings of SPIE | 2015

Transmission line circuit model of a PPy based trilayer mechanical sensor

Nazanin Khalili; Hani E. Naguib; Roy H. Kwon

Many efforts have been devoted to modeling the diffusive impedance of conjugated polymer (CP) based actuators using their equivalent electrical circuits. Employing the same methodology, CP based mechanical sensors can also be treated by an equivalent transmission line circuit and their overall impedance can be modeled, correspondingly. Due to the large number of resources to study the electrical circuits, this technique is a practical tool. Therefore, in this study, an equivalent RC-circuit model including electrochemical parameters is determined to obtain a better perception of the sensing mechanism of these mechanical sensors. Conjugated polymers are capable of generating an output current or voltage upon an induced mechanical deformation or force. This observed behavior in polymer based mechanical sensors is considered as the reverse actuation process. Many outstanding properties of the conjugated polymer actuators including their light weight and biocompatibility are still retained by these sensors. Sensors with a trilayer configuration are capable of operating in air in response to a mechanically induced bending deformation. However, due to their nonlinear behavior and multivariable characteristics, it is required to propose a systematic approach in order to optimize their performance and gain the optimal values of their constituent decision variable. Therefore, the proposed mathematical model is used to define the output voltage of the PPy based mechanical sensor along with the sensitivity of the model to the applied frequency of the induced deformation. Applying a multiobjective optimization algorithm, the optimization problem was solved and the tracking ability of the proposed model was then verified.


Smart Materials and Structures | 2014

Electrochemomechanical constrained multiobjective optimization of PPy/MWCNT actuators

Nazanin Khalili; Hani E. Naguib; Roy H. Kwon

Polypyrrole (PPy) conducting polymers have shown a great potential for the fabrication of conjugated polymer-based actuating devices. Consequently, they have been a key point in developing many advanced emerging applications such as biomedical devices and biomimetic robotics. When designing an actuator, taking all of the related decision variables, their roles and relationships into consideration is of pivotal importance to determine the actuators final performance. Therefore, the central focus of this study is to develop an electrochemomechanical constrained multiobjective optimization model of a PPy/MWCNTs trilayer actuator. For this purpose, the objective functions are designed to capture the three main characteristics of these actuators, namely their tip vertical displacement, blocking force and response time. To obtain the optimum range of the designated decision variables within the feasible domain, a multiobjective optimization algorithm is applied while appropriate constraints are imposed. The optimum points form a Pareto surface on which they are consistently spread. The numerical results are presented; these results enable one to design an actuator with consideration to the desired output performances. For the experimental analysis, a multilayer bending-type actuator is fabricated, which is composed of a PVDF layer and two layers of PPy with an incorporated layer of multi-walled carbon nanotubes deposited on each side of the PVDF membrane. The numerical results are experimentally verified; in order to determine the performance of the fabricated actuator, its outputs are compared with a neat PPy actuators experimental and numerical counterparts.


Proceedings of SPIE | 2014

On the geometrical and mechanical multi-aspect optimization of PPy/MWCNT actuators

Nazanin Khalili; Hani E. Naguib; Roy H. Kwon

Polypyrrole (PPy) conducting polymers as one of the most well-known actuation materials have shown numerous applications in a variety of fields such as biomedical devices as well as biomimetic robotics. This study investigates the multiobjective optimization of a PPy/MWCNTs actuator through an electrochemomechanical model. The multilayer actuator is composed of a PVDF layer, as the core membrane and an electrolyte reservoir, as well as two one layer of a conjugated polymer and one layer of multiwalled carbon nanotubes deposited on each side of the PVDF layer. In order to obtain the optimum values for each decision variable (i.e., geometrical and electrochemical), the two main outputs of the bending actuator, the tip displacement and blocking force, have been mathematically modeled and formulated as the objective functions. A multiobjective optimization algorithm is applied to simultaneously maximize the blocking force and tip displacement generated by the actuator. Furthermore, a range for each design variable is defined within which none of the objective functions of the film-type actuator dominates the other one while they are both kept within an acceptable range. The results obtained from the mathematical model are experimentally verified. Moreover, in order to determine the performance of the fabricated actuator, its outputs are compared with their counterparts of a neat PPy actuator.


Proceedings of SPIE | 2016

Development, fabrication, and modeling of highly sensitive conjugated polymer based piezoresistive sensors in electronic skin applications

Nazanin Khalili; Hani E. Naguib; Roy H. Kwon

Human intervention can be replaced through development of tools resulted from utilizing sensing devices possessing a wide range of applications including humanoid robots or remote and minimally invasive surgeries. Similar to the five human senses, sensors interface with their surroundings to stimulate a suitable response or action. The sense of touch which arises in human skin is among the most challenging senses to emulate due to its ultra high sensitivity. This has brought forth novel challenging issues to consider in the field of biomimetic robotics. In this work, using a multiphase reaction, a polypyrrole (PPy) based hydrogel is developed as a resistive type pressure sensor with an intrinsically elastic microstructure stemming from three dimensional hollow spheres. Furthermore, a semi-analytical constriction resistance model accounting for the real contact area between the PPy hydrogel sensors and the electrode along with the dependency of the contact resistance change on the applied load is developed. The model is then solved using a Monte Carlo technique and the sensitivity of the sensor is obtained. The experimental results showed the good tracking ability of the proposed model.


Soft Matter | 2018

An interlocked flexible piezoresistive sensor with 3D micropyramidal structures for electronic skin applications

Nazanin Khalili; X. Shen; Hani E. Naguib

The development of flexible pressure sensors with human-like sensing capabilities is an emerging field due to their wide range of applications from human robot interactions to wearable electronics. Piezoresistive sensors respond to externally induced mechanical stimuli through changes in their electrical resistance. The current state-of-the-art piezoresistive sensors are mainly constructed via dispersion of conductive nanofillers in an elastomer matrix making their performance strongly reliable on the degree of dispersion. Alternatively, changes in the contact area of conductive elastomers result in higher sensitivity and more tunable variables. Herein, an interlocked sensor comprising two flexible layers of 3D pyramidal microstructures is fabricated with a thin layer of carbon nanotubes deposited onto the micropatterns. The introduced array of micropyramids with varying height and pitch sizes allows for higher changes in the contact area upon applying an external load. The results indicate that the height and pitch of the structures together with a newly defined variable, the critical dimension, affect the sensors sensitivity. An optimal performance is observed for minimized values of the critical dimension. Furthermore, to verify the obtained results, a finite-element-assisted analytical constriction-resistance model is used to capture the piezoresistive response of the sensor. The theoretical results show the high tracking ability of their experimental counterparts.


ACS Applied Materials & Interfaces | 2018

Self-Assembled Nanorod Structures on Nanofibers for Textile Electrochemical Capacitor Electrodes with Intrinsic Tactile Sensing Capabilities

HaoTian Harvey Shi; Nazanin Khalili; Taylor Morrison; Hani E. Naguib

A novel polyaniline nanorod (PAniNR) three-dimensional structure was successfully grown on flexible polyacrylonitrile (PAN) nanofiber substrate as the electrode material for electrochemical capacitors (ECs), constructed via self-stabilized dispersion polymerization process. The electrode offered desired mechanical properties such as flexibility and bendability, whereas it maintained optimal electrochemical characteristics. The electrode and the assembled EC cell also achieved intrinsic piezoresistive sensing properties, leading to real-time monitoring of excess mechanical pressure and bending during cell operations. The PAniNR@PAN electrodes show an average diameter of 173.6 nm, with the PAniNR growth of 50.7 nm in length. Compared to the electrodes made from pristine PAni, the gravimetric capacitance increased by 39.8% to 629.6 F/g with aqueous acidic electrolyte. The electrode and the assembled EC cell with gel electrolyte were responsive to tensile, compressive, and bending stresses with a sensitivity of 0.95 MPa-1.


Proceedings of SPIE | 2017

On the modeling and characterization of an interlocked flexible electronic skin

Nazanin Khalili; Xuechen Shen; Hani E. Naguib

Development of an electronic skin with ultra-high pressure sensitivity is now of critical importance due its broad range of applications including prosthetic skins and biomimetic robotics. Microstructured conductive composite elastomers can acquire mechanical and electrical properties analogous to those of natural skin. One of the most prominent features of human skin is its tactile sensing property which can be mimicked in an electronic skin. Herein, an electrically conductive composite comprising polydimethylsiloxane and conductive fillers is used as a flexible and stretchable piezoresistive sensor. The electrical conductivity is induced within the elastomer matrix via carbon nanotubes whereas the piezoresistivity is obtained by means of microstructuring the surface of the substrate. An interlocked array of pyramids in micro-scale allows the change in the contact resistance between two thin layers of the composite upon application of an external load. Deformation of the interlocked arrays endows the sensor with an ultra-high sensitivity to the external pressures within the range of human skin perception. Moreover, using finite element analysis, the change in the contact are between the two layers was captured for different geometries. The structure of the sensor can be optimized through an optimization model in order to acquire maximum sensitivity.


Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting | 2013

Multiobjective Optimization of Trilayer Polypyrrole Conducting Polymer Actuators

Nazanin Khalili; Yu-Chen Sun; Hani E. Naguib; Roy H. Kwon

The main focus of this study is the optimization of a trilayer actuator comprising two layers of polypyrrole and a PVDF membrane core. Since the performance of these actuators is difficult to predict due to their mechanical and chemical properties, optimizing their output behavior such as the tip displacement and blocking force is of crucial importance for utilizing their full potentials and more significantly increasing predictability in their performance. For this purpose, two optimization techniques (multiobjective genetic algorithm and active set algorithm) have been carried out based on a developed mathematical model. Two nonlinear constrained equations representing the tip displacement and the blocking force are formulated and solved for a predetermined thickness of the PVDF core membrane. Both equations are subjected to a bound constraint and a nonlinear equality constraint. The output blocking force and the tip deformation act in a reverse manner and there is a trade-off between them. Accordingly, the results imply that there is no single solution to the problem and a range for each of the design variables should be determined so that there will be a sense of balance between the two objectives. Furthermore, the results obtained from the multiobjective optimization methodology have been verified experimentally.© 2013 ASME


Soft Matter | 2016

A constriction resistance model of conjugated polymer based piezoresistive sensors for electronic skin applications

Nazanin Khalili; Hani E. Naguib; Roy H. Kwon


Synthetic Metals | 2014

On the multiobjective optimization of conjugated polymer based trilayer actuators

Nazanin Khalili; Hani E. Naguib; Roy H. Kwon

Collaboration


Dive into the Nazanin Khalili's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H Asif

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X. Shen

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge