Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naziba Islam is active.

Publication


Featured researches published by Naziba Islam.


Journal of Clinical Investigation | 1997

The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39.

Aaron J. Marcus; M. J. Broekman; Joan H.F. Drosopoulos; Naziba Islam; T. N. Alyonycheva; L. B. Safier; Katherine A. Hajjar; D. N. Posnett; M. A. Schoenborn; K. A. Schooley; R. B. Gayle; Charles R. Maliszewski

We previously demonstrated that when platelets are in motion and in proximity to endothelial cells, they become unresponsive to agonists (Marcus, A.J., L.B. Safier, K.A. Hajjar, H.L. Ullman, N. Islam, M.J. Broekman, and A.M. Eiroa. 1991. J. Clin. Invest. 88:1690-1696). This inhibition is due to an ecto-ADPase on the surface of endothelial cells which metabolizes ADP released from activated platelets, resulting in blockade of the aggregation response. Human umbilical vein endothelial cells (HUVEC) ADPase was biochemically classified as an E-type ATP-diphosphohydrolase. The endothelial ecto-ADPase is herein identified as CD39, a molecule originally characterized as a lymphoid surface antigen. All HUVEC ecto-ADPase activity was immunoprecipitated by monoclonal antibodies to CD39. Surface localization of HUVEC CD39 was established by confocal microscopy and flow cytometric analyses. Transfection of COS cells with human CD39 resulted in both ecto-ADPase activity as well as surface expression of CD39. PCR analyses of cDNA obtained from HUVEC mRNA and recombinant human CD39 revealed products of the same size, and of identical sequence. Northern blot analyses demonstrated that HUVEC express the same sized transcripts for CD39 as MP-1 cells (from which CD39 was originally cloned). We established the role of CD39 as a prime endothelial thromboregulator by demonstrating that CD39-transfected COS cells acquired the ability to inhibit ADP-induced aggregation in platelet-rich plasma. The identification of HUVEC ADPase/CD39 as a constitutively expressed potent inhibitor of platelet reactivity offers new prospects for antithrombotic therapeusis.


Biochemical and Biophysical Research Communications | 1982

Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro.

Aaron J. Marcus; M. Johan Broekman; Lenore B. Safier; Harris L. Ullman; Naziba Islam; Charles N. Serhan; Lorene E. Rutherford; Helen M. Korchak; Gerald Weissmann

Abstract Interactions of human platelets with neutrophils were studied in suspensions of [ 3 H]arachidonate-labeled platelets and unlabeled neutrophils stimulated with ionophore A23187. Several radioactive arachidonate metabolites, not produced by platelets alone, were detected, including [ 3 H]-labeled leukotriene B 4 (LTB 4 ), dihydroxyeicosatetraenoic acid (DHETE) and 5-hydroxyeicosatetraenoic acid (5-HETE). When [ 3 H]12-HETE, a platelet product, was added to stimulated neutrophils, DHETE was formed. Similarly, when [ 3 H]5-HETE, a neutrophil product, was added to stimulated platelets, DHETE was the major product. These results suggest that upon stimulation: 1) platelet-derived arachidonate may serve as precursor for the neutrophil-derived eicosanoids LTB 4 and 5-HETE, and 2) that platelet-derived 12-HETE can be converted to DHETE by human neutrophils. The present investigation documents cell-cell interactions via the lipoxygenase pathway, which may be important in hemostasis, thrombosis and inflammation.


Journal of Clinical Investigation | 1991

Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment.

M T Santos; J Valles; Aaron J. Marcus; Lenore B. Safier; M J Broekman; Naziba Islam; Harris L. Ullman; A M Eiroa; J Aznar

Erythrocytes are known to influence hemostasis. Bleeding times are prolonged in anemia and corrected by normalizing the hematocrit. We now demonstrate that intact erythrocytes modulate biochemical and functional responsiveness of activated platelets. A two-stage procedure, permitting studies of cell-cell interactions and independently evaluating platelet activation and recruitment within 1 min of stimulation, was developed. Erythrocytes increased platelet serotonin release despite aspirin treatment, enzymatic adenosine diphosphate removal, protease inhibition, or combinations thereof. The data suggested that erythrocyte enhancement of platelet reactivity can reduce the therapeutic effectiveness of aspirin. Erythrocytes metabolically modified platelet arachidonate or eicosapentaenoate release and eicosanoid formation. They promoted significant increases in cyclooxygenase and lipoxygenase metabolites upon platelet stimulation with collagen or thrombin. However, with ionophore, erythrocytes strongly reduced platelet lipoxygenation. These erythrocyte modulatory effects were stimulus-specific. Activated platelet-erythrocyte mixtures, with or without aspirin, promoted 3-10-fold increases in extracellular free fatty acid, which would be available for transcellular metabolism. Erythrocyte-induced increases in free eicosapentaenoate may contribute to antithrombotic and anti-inflammatory effects of this fish oil derivative. These results provide biochemical insight into erythrocyte contributions to thrombosis and hemostasis, and support the concept of thrombus formation as a multicellular event.


Journal of Clinical Investigation | 1998

Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39.

rd R B Gayle; Charles R. Maliszewski; S D Gimpel; M. A. Schoenborn; R G Caspary; C Richards; K Brasel; Virginia L. Price; Joan H.F. Drosopoulos; Naziba Islam; T. N. Alyonycheva; M. J. Broekman; Aaron J. Marcus

Excessive platelet accumulation and recruitment, leading to vessel occlusion at sites of vascular injury, present major therapeutic challenges in cardiovascular medicine. Endothelial cell CD39, an ecto-enzyme with ADPase and ATPase activities, rapidly metabolizes ATP and ADP released from activated platelets, thereby abolishing recruitment. Therefore, a soluble form of CD39, retaining nucleotidase activities, would constitute a novel antithrombotic agent. We designed a recombinant, soluble form of human CD39, and isolated it from conditioned media from transiently transfected COS-1 cells and from stably transfected Chinese hamster ovary (CHO) cells. Conditioned medium from CHO cells grown under serum-free conditions was subjected to anti-CD39 immunoaffinity column chromatography, yielding a single approximately 66-kD protein with ATPase and ADPase activities. Purified soluble CD39 blocked ADP-induced platelet aggregation in vitro, and inhibited collagen-induced platelet reactivity. Kinetic analyses indicated that, while soluble CD39 had a Km for ADP of 5.9 microM and for ATP of 2.1 microM, the specificity constant kcat/Km was the same for both substrates. Intravenously administered soluble CD39 remained active in mice for an extended period of time, with an elimination phase half-life of almost 2 d. The data indicate that soluble CD39 is a potential therapeutic agent for inhibition of platelet-mediated thrombotic diatheses.


Journal of Clinical Investigation | 1991

Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells.

Aaron J. Marcus; Lenore B. Safier; Katherine A. Hajjar; Harris L. Ullman; Naziba Islam; M J Broekman; A M Eiroa

We previously reported that platelets become unresponsive to agonists when stimulated in combined suspension with aspirin-treated human umbilical vein endothelial cells. Inhibition occurred concomitant with metabolism of platelet-derived endoperoxides to prostacyclin by endothelial cells. We now demonstrate that if aspirin-treated platelets which fully respond to appropriate doses of agonists are exposed to aspirin-treated endothelial cells, they remain unresponsive despite absence of prostacyclin. Platelet inhibition is due in large part to ecto-ADPase activity on the endothelial cells. This was established by incubating aspirin-treated endothelial cells with 14C-ADP. Radio-thin layer chromatography and aggregometry demonstrated that 14C-ADP and induction of platelet activation decreased rapidly and concurrently. AMP accumulated transiently, was further metabolized to adenosine, and deaminated to inosine. The apparent Km of the endothelial cell ADPase was 33-42 microM and the Vmax 17-43 nmol/min per 10(6) cells, values in the range of antithrombotic potential. Thus, at least three complementary systems in human endothelial cells control platelet responsiveness: a cell-associated, aspirin-insensitive ADPase which functions in parallel with fluid phase autacoids such as the aspirin-inhibitable eicosanoids, and the aspirin-insensitive endothelium-derived relaxing factor.


Journal of Clinical Investigation | 1993

Downregulation of human platelet reactivity by neutrophils. Participation of lipoxygenase derivatives and adhesive proteins.

J Valles; M T Santos; Aaron J. Marcus; Lenore B. Safier; M J Broekman; Naziba Islam; Harris L. Ullman; J Aznar

Unstimulated neutrophils inhibited activation and recruitment of thrombin- or collagen-stimulated platelets in an agonist-specific manner. This occurred under conditions of close physical cell-cell contact, although biochemical adhesion between the cells as mediated by P-selectin was not required. Moreover, in the presence of monoclonal P-selectin antibodies that blocked biochemical platelet-neutrophil adhesion, thrombin-stimulated platelets were more efficiently downregulated by neutrophils. This suggested a prothrombotic role for P-selectin under these circumstances. The neutrophil downregulatory effect on thrombin-stimulated platelets was amplified by lipoxygenase inhibition with 5,8,11,14-eicosatetraynoic acid. In contrast, the neutrophil inhibitory effect on platelets was markedly reduced by platelet-derived 12S-hydroxy-5,8-cis, 10-trans, 14-cis-eicosatetraenoic acid (12S-HETE), as well as by the platelet-neutrophil transcellular product, 12S,20-dihydroxy-5,8,10,14-eicosatetraenoic acid (12S,20-DiHETE), but not by another comparable metabolite, 5S,12S-dihydroxy-6-trans, 8-cis, 10-trans, 14-cis-eicosatetraenoic acid (5S,12S-DiHETE), or the neutrophil-derived hydroxy acid leukotriene B4. The neutrophil downregulatory effect on thrombin-induced platelet reactivity was enhanced by aspirin treatment. This may represent a novel action of aspirin as an inhibitor of platelet function. These results provide in vitro biochemical and functional evidence for the thromboregulatory role of neutrophils and emphasize the multicellular aspect of hemostasis and thrombosis.


Journal of Clinical Investigation | 1987

Studies on the mechanism of omega-hydroxylation of platelet 12-hydroxyeicosatetraenoic acid (12-HETE) by unstimulated neutrophils.

Aaron J. Marcus; Lenore B. Safier; Harris L. Ullman; Naziba Islam; M J Broekman; C. Von Schacky

Stimulated platelets, in the presence or absence of aspirin, synthesize significant quantities of 12-hydroxyeicosatetraenoic acid (12-HETE), which is chemotactic and chemokinetic, and enhances mononuclear cell procoagulant activity. During a cell-cell interaction between stimulated platelets and unstimulated neutrophils, platelet 12-HETE is metabolized to 12,20-dihydroxyeicosatetraenoic acid (12,20-DiHETE) by neutrophils. Characteristics of the enzyme system in unstimulated neutrophils responsible for this omega-hydroxylation were investigated. A broad range of cytochrome P-450 inhibitors, as well as leukotriene B4, blocked formation of 12,20-DiHETE. Owing largely to released proteases, neutrophil homogenization abolished activity. Pretreatment with diisopropylfluorophosphate preserved activity in neutrophil homogenates. omega-Hydroxylation of 12-HETE was confined solely to the microsomal fraction. Specific activity increased 6.6-fold compared with neutrophil sonicates. The electron donor NADPH was a required cofactor. These results indicate that the enzyme in unstimulated human neutrophils, which metabolizes 12-HETE from stimulated platelets to 12,20-DiHETE in this cell-cell interaction, is a cytochrome P-450 monooxygenase.


Journal of Translational Medicine | 2007

CD39 activity correlates with stage and inhibits platelet reactivity in chronic lymphocytic leukemia

Dianne Pulte; Kim E. Olson; M. Johan Broekman; Naziba Islam; Harold Ballard; Richard R. Furman; Ashley E. Olson; Aaron J. Marcus

BackgroundChronic lymphocytic leukemia (CLL) is characterized by accumulation of mature appearing lymphocytes and is rarely complicated by thrombosis. One possible explanation for the paucity of thrombotic events in these patients may be the presence of the ecto-nucleotidase CD39/NTDPase-1 on the surface of the malignant cells in CLL. CD39 is the major promoter of platelet inhibition in vivo via its metabolism of ADP to AMP. We hypothesize that if CD39 is observed on CLL cells, then patients with CLL may be relatively protected against platelet aggregation and recruitment and that CD39 may have other effects on CLL, including modulation of the disease, via its metabolism of ATP.MethodsNormal and malignant lymphocytes were isolated from whole blood from patients with CLL and healthy volunteers. Enzyme activity was measured via radio-TLC assay and expression via FACS. Semi-quantititative RT-PCR for CD39 splice variants and platelet function tests were performed on several samples.ResultsFunctional assays demonstrated that ADPase and ATPase activities were much higher in CLL cells than in total lymphocytes from the normal population on a per cell basis (p-value < 0.00001). CD39 activity was elevated in stage 0–2 CLL compared to stage 3–4 (p < 0.01). FACS of lymphocytes demonstrated CD39 expression on > 90% of normal and malignant B-lymphocytes and ~8% of normal T-lymphocytes. RT-PCR showed increased full length CD39 and splice variant 1.5, but decreased variant 1.3 in CLL cells. Platelet function tests showed inhibition of platelet activation and recruitment to ADP by CLL cells.ConclusionCD39 is expressed and active on CLL cells. Enzyme activity is higher in earlier stages of CLL and decreased enzyme activity may be associated with worsening disease. These results suggest that CD39 may play a role in the pathogenesis of malignancy and protect CLL patients from thrombotic events.


The Journal of Allergy and Clinical Immunology | 1984

Production of metabolic products of arachidonic acid during cell-cell interactions

Aaron J. Marcus; Lenore B. Safier; M. Johan Broekman; Harris L. Ullman; Naziba Islam; Tania C. Sorrell; Charles N. Serhan; Gerald Weissmann; Thomas D. Oglesby; Robert R. Gorman

We studied interactions of human platelets and neutrophils with particular reference to the arachidonic acid pathway. Suspensions of [3H]arachidonate-labeled platelets and unlabeled neutrophils were stimulated with ionophore A23187. We detected several radioactive arachidonate metabolites, which are not produced by platelets alone. These included [3H]-labeled leukotriene B4 (LTB4), dihydroxy-eicosatetraeonic acid (DiHETE), and 5-hydroxy-eicosatetraenoic acid (5-HETE). DiHETE was formed when the platelet product [3H]12-HETE was added to ionophore-stimulated neutrophils. In addition, DiHETE was the major metabolite when [3H]5-HETE, a neutrophil arachidonate product, was added to stimulated platelets. We therefore suggest that upon stimulation, platelet-derived arachidonate can serve as precursor for the neutrophil-derived eicosanoids LTB4 and 5-HETE, and the platelet-derived product 12-HETE can be metabolized to DiHETE by stimulated human neutrophils. More recently we have shown that 12-HETE from thrombin-stimulated platelets can also be metabolized to a new product, 12,20-DiHETE, by unstimulated human neutrophils. It would appear that the platelet and neutrophil lipoxygenase pathways take part in cell-cell interactions--an observation that suggests a role for the neutrophils that are present in hemostatic plugs, thrombi, and inflammatory processes.


Archives of Biochemistry and Biophysics | 2002

Cell-type specificity of ectonucleotidase expression and upregulation by 2,3,7,8-tetrachlorodibenzo-p-dioxin

Emily Wood; M. Johan Broekman; Terence L. Kirley; Silvia Diani-Moore; Michelle Tickner; Joan H.F. Drosopoulos; Naziba Islam; Joshua I Park; Aaron J. Marcus; Arleen B. Rifkind

We report here that induction of ectoATPase by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is cell-type specific and not a generalized response to aryl hydrocarbon (Ah) receptor activation. TCDD increased [14C]-ATP and -ADP metabolism in two mouse hepatoma lines, Hepa1c1c7 and Hepa1-6 cells, but not in human hepatoma HepG2 or HuH-7 cells, human umbilical vein endothelial cells (HUVEC), chick hepatoma (LMH) cells, or chick primary hepatocytes or cardiac myocytes, even though all of those cell types were Ah receptor-responsive, as evidenced by cytochrome P4501A induction. To determine whether the differences in ectonucleotidase responsiveness to TCDD might be related to differences in cell-type ectonucleotidase expression, ATP and ADP metabolite patterns, the products of several classes of ectonucleotidases including ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), ectophosphodiesterase/pyrophosphatases (E-NPP enzymes) and ectoalkaline phosphatase activities were examined. Those patterns, together with results of enzyme assays, Western blotting, or semiquantitative RT-PCR show that NTPDase2 is the main ectonucleotidase for murine and human hepatoma cells, NTPDase3 for chick hepatocytes and LMH cells, and an E-NPP enzyme for chick cardiac myocytes. Evidence for NTPDase2 expression was lacking in all cells except the mouse and human hepatoma cells. TCDD increased expression of the NTPDase2 gene but only in the mouse and not in the human hepatoma cells. TCDD did not increase NTPDase3, NTPDase1, E-NPP, or alkaline phosphatase in any of the cell types examined. The failure of TCDD to increase ATP metabolism in HUVEC, chick LMH cells, hepatocytes, and cardiac myocytes can be attributed to their lack of NTPDase2 expression, while the increase in ATP metabolism by TCDD in the mouse but not the human hepatoma cells can be explained by differences in TCDD effects on mouse and human hepatoma NTPDase2 gene expression. In addition to characterizing effects of TCDD on ectonucleotidases, these studies reveal major differences in the complements of ectonucleotidases present in different cell types. It is likely that such differences are important for cell-specific susceptibility to extracellular nucleotide toxicity and responses to purinergic signaling.

Collaboration


Dive into the Naziba Islam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge