Nazir Ismail
University of Pretoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nazir Ismail.
Lancet Infectious Diseases | 2015
Timothy M. Walker; Thomas A. Kohl; Shaheed V. Omar; Jessica Hedge; Carlos del Ojo Elias; Phelim Bradley; Zamin Iqbal; Silke Feuerriegel; Katherine E. Niehaus; Daniel J. Wilson; David A. Clifton; Georgia Kapatai; Camilla L. C. Ip; Rory Bowden; Francis Drobniewski; Caroline Allix-Béguec; Cyril Gaudin; Julian Parkhill; Roland Diel; Philip Supply; Derrick W. Crook; E. Grace Smith; A. Sarah Walker; Nazir Ismail; Stefan Niemann; Tim Peto
Summary Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early. Funding Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.
Journal of Clinical Microbiology | 2014
Timothy C. Rodwell; Faramarz Valafar; James T. Douglas; Lishi Qian; Richard S. Garfein; Ashu Chawla; Jessica Torres; Victoria Zadorozhny; Min Soo Kim; Matt Hoshide; Donald G. Catanzaro; Lynn Jackson; Grace Lin; Edward Desmond; Camilla Rodrigues; K. D. Eisenach; Thomas C. Victor; Nazir Ismail; Valeru Crudu; Maria Tarcela Gler; Antonino Catanzaro
ABSTRACT Molecular diagnostic methods based on the detection of mutations conferring drug resistance are promising technologies for rapidly detecting multidrug-/extensively drug-resistant tuberculosis (M/XDR TB), but large studies of mutations as markers of resistance are rare. The Global Consortium for Drug-Resistant TB Diagnostics analyzed 417 Mycobacterium tuberculosis isolates from multinational sites with a high prevalence of drug resistance to determine the sensitivities and specificities of mutations associated with M/XDR TB to inform the development of rapid diagnostic methods. We collected M/XDR TB isolates from regions of high TB burden in India, Moldova, the Philippines, and South Africa. The isolates underwent standardized phenotypic drug susceptibility testing (DST) to isoniazid (INH), rifampin (RIF), moxifloxacin (MOX), ofloxacin (OFX), amikacin (AMK), kanamycin (KAN), and capreomycin (CAP) using MGIT 960 and WHO-recommended critical concentrations. Eight genes (katG, inhA, rpoB, gyrA, gyrB, rrs, eis, and tlyA) were sequenced using Sanger sequencing. Three hundred seventy isolates were INHr, 356 were RIFr, 292 were MOXr/OFXr, 230 were AMKr, 219 were CAPr, and 286 were KANr. Four single nucleotide polymorphisms (SNPs) in katG/inhA had a combined sensitivity of 96% and specificities of 97 to 100% for the detection of INHr. Eleven SNPs in rpoB had a combined sensitivity of 98% for RIFr. Eight SNPs in gyrA codons 88 to 94 had sensitivities of 90% for MOXr/OFXr. The rrs 1401/1484 SNPs had 89 to 90% sensitivity for detecting AMKr/CAPr but 71% sensitivity for KANr. Adding eis promoter SNPs increased the sensitivity to 93% for detecting AMKr and to 91% for detecting KANr. Approximately 30 SNPs in six genes predicted clinically relevant XDR-TB phenotypes with 90 to 98% sensitivity and almost 100% specificity.
The New England Journal of Medicine | 2017
N. Sarita Shah; Sara C. Auld; James C. M. Brust; Barun Mathema; Nazir Ismail; Pravi Moodley; Koleka Mlisana; Salim Allana; Angela Campbell; Thuli Mthiyane; Natashia Morris; Primrose Mpangase; Hermina van der Meulen; Shaheed V. Omar; Tyler S. Brown; Apurva Narechania; Elena Shaskina; Thandi Kapwata; Barry N. Kreiswirth; Neel R. Gandhi
BACKGROUND Drug‐resistant tuberculosis threatens recent gains in the treatment of tuberculosis and human immunodeficiency virus (HIV) infection worldwide. A widespread epidemic of extensively drug‐resistant (XDR) tuberculosis is occurring in South Africa, where cases have increased substantially since 2002. The factors driving this rapid increase have not been fully elucidated, but such knowledge is needed to guide public health interventions. METHODS We conducted a prospective study involving 404 participants in KwaZulu‐Natal Province, South Africa, with a diagnosis of XDR tuberculosis between 2011 and 2014. Interviews and medical‐record reviews were used to elicit information on the participants’ history of tuberculosis and HIV infection, hospitalizations, and social networks. Mycobacterium tuberculosis isolates underwent insertion sequence (IS)6110 restriction‐fragment–length polymorphism analysis, targeted gene sequencing, and whole‐genome sequencing. We used clinical and genotypic case definitions to calculate the proportion of cases of XDR tuberculosis that were due to inadequate treatment of multidrug‐resistant (MDR) tuberculosis (i.e., acquired resistance) versus those that were due to transmission (i.e., transmitted resistance). We used social‐network analysis to identify community and hospital locations of transmission. RESULTS Of the 404 participants, 311 (77%) had HIV infection; the median CD4+ count was 340 cells per cubic millimeter (interquartile range, 117 to 431). A total of 280 participants (69%) had never received treatment for MDR tuberculosis. Genotypic analysis in 386 participants revealed that 323 (84%) belonged to 1 of 31 clusters. Clusters ranged from 2 to 14 participants, except for 1 large cluster of 212 participants (55%) with a LAM4/KZN strain. Person‐to‐person or hospital‐based epidemiologic links were identified in 123 of 404 participants (30%). CONCLUSIONS The majority of cases of XDR tuberculosis in KwaZulu‐Natal, South Africa, an area with a high tuberculosis burden, were probably due to transmission rather than to inadequate treatment of MDR tuberculosis. These data suggest that control of the epidemic of drug‐resistant tuberculosis requires an increased focus on interrupting transmission. (Funded by the National Institute of Allergy and Infectious Diseases and others.)
Lancet Infectious Diseases | 2016
Matteo Zignol; Anna S. Dean; Natavan Alikhanova; Sönke Andres; Andrea M. Cabibbe; Daniela Maria Cirillo; Andrei Dadu; Andries W. Dreyer; Michèle Driesen; Christopher Gilpin; Rumina Hasan; Zahra Hasan; Sven Hoffner; Ashaque Husain; Alamdar Hussain; Nazir Ismail; Mostofa Kamal; Mikael Mansjö; Lindiwe Mvusi; Stefan Niemann; Shaheed V. Omar; Ejaz Qadeer; Leen Rigouts; Sabine Ruesch-Gerdes; Marco Schito; Mehriban Seyfaddinova; Alena Skrahina; Sabira Tahseen; William A. Wells; Ya Diul Mukadi
Summary Background Pyrazinamide and fluoroquinolones are essential antituberculosis drugs in new rifampicin-sparing regimens. However, little information about the extent of resistance to these drugs at the population level is available. Methods In a molecular epidemiology analysis, we used population-based surveys from Azerbaijan, Bangladesh, Belarus, Pakistan, and South Africa to investigate resistance to pyrazinamide and fluoroquinolones among patients with tuberculosis. Resistance to pyrazinamide was assessed by gene sequencing with the detection of resistance-conferring mutations in the pncA gene, and susceptibility testing to fluoroquinolones was conducted using the MGIT system. Findings Pyrazinamide resistance was assessed in 4972 patients. Levels of resistance varied substantially in the surveyed settings (3·0–42·1%). In all settings, pyrazinamide resistance was significantly associated with rifampicin resistance. Among 5015 patients who underwent susceptibility testing to fluoroquinolones, proportions of resistance ranged from 1·0–16·6% for ofloxacin, to 0·5–12·4% for levofloxacin, and 0·9–14·6% for moxifloxacin when tested at 0·5 μg/mL. High levels of ofloxacin resistance were detected in Pakistan. Resistance to moxifloxacin and gatifloxacin when tested at 2 μg/mL was low in all countries. Interpretation Although pyrazinamide resistance was significantly associated with rifampicin resistance, this drug may still be effective in 19–63% of patients with rifampicin-resistant tuberculosis. Even though the high level of resistance to ofloxacin found in Pakistan is worrisome because it might be the expression of extensive and unregulated use of fluoroquinolones in some parts of Asia, the negligible levels of resistance to fourth-generation fluoroquinolones documented in all survey sites is an encouraging finding. Rational use of this class of antibiotics should therefore be ensured to preserve its effectiveness. Funding Bill & Melinda Gates Foundation, United States Agency for International Development, Global Alliance for Tuberculosis Drug Development.
Journal of Clinical Microbiology | 2012
Luke T. Daum; John D. Rodriguez; Sue A. Worthy; Nazir Ismail; Shaheed V. Omar; Andries W. Dreyer; P.B. Fourie; Anwar Ahmed Hoosen; James P. Chambers; Gerald W. Fischer
ABSTRACT A novel protocol for full-length Mycobacterium tuberculosis gene analysis of first- and second-line drug resistance was developed using the Ion Torrent Personal Genome Machine (PGM). Five genes—rpoB (rifampin), katG (isoniazid), pncA (pyrazinamide), gyrA (ofloxacin/fluoroquinolone), and rrs (aminoglycosides)—were amplified and sequenced, and results were compared to those obtained by genotypic Hain line probe assay (LPA) and phenotypic Bactec MGIT 960 analysis using 26 geographically diverse South African clinical isolates collected between July and November 2011. Ion Torrent sequencing exhibited 100% (26/26) concordance to phenotypic resistance obtained by MGIT 960 culture and genotypic rpoB and katG results by LPA. In several rifampin-resistant isolates, Ion Torrent sequencing revealed uncommon substitutions (H526R and D516G) that did not have a defined mutation by LPA. Importantly, previously uncharacterized mutations in rpoB (V194I), rrs (G878A), and pncA (Q122Stop) genes were observed. Ion Torrent sequencing may facilitate tracking and monitoring geographically diverse multidrug-resistant and extensively drug-resistant strains and could potentially be integrated into selected regional and reference settings throughout Africa, India, and China.
Nature microbiology | 2016
Sarah G. Earle; Chieh-Hsi Wu; Jane Charlesworth; Nicole Stoesser; N. Claire Gordon; Timothy M. Walker; Chris C. A. Spencer; Zamin Iqbal; David A. Clifton; Katie L. Hopkins; Neil Woodford; E. Grace Smith; Nazir Ismail; Martin Llewelyn; Tim Peto; Derrick W. Crook; Gil McVean; A. Sarah Walker; Daniel J. Wilson
Bacteria pose unique challenges for genome-wide association studies because of strong structuring into distinct strains and substantial linkage disequilibrium across the genome1,2. Although methods developed for human studies can correct for strain structure3,4, this risks considerable loss-of-power because genetic differences between strains often contribute substantial phenotypic variability5. Here, we propose a new method that captures lineage-level associations even when locus-specific associations cannot be fine-mapped. We demonstrate its ability to detect genes and genetic variants underlying resistance to 17 antimicrobials in 3,144 isolates from four taxonomically diverse clonal and recombining bacteria: Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Strong selection, recombination and penetrance confer high power to recover known antimicrobial resistance mechanisms and reveal a candidate association between the outer membrane porin nmpC and cefazolin resistance in E. coli. Hence, our method pinpoints locus-specific effects where possible and boosts power by detecting lineage-level differences when fine-mapping is intractable.
International Journal of Tuberculosis and Lung Disease | 2012
H.M. Said; Marleen M. Kock; Nazir Ismail; Kamaldeen Baba; S.V. Omar; Ayman G. Osman; Anwar Ahmed Hoosen; M.M. Ehlers
BACKGROUND The GenoType® MTBDRsl assay is a new rapid assay for the detection of resistance to second-line anti-tuberculosis drugs. OBJECTIVE To evaluate the MTBDRsl assay on 342 multidrug-resistant tuberculosis isolates for resistance to ofloxacin (OFX), kanamycin (KM), capreomycin (CPM) and ethambutol (EMB), to compare the results to the agar proportion method, and to test discrepant results using DNA sequencing. RESULT The sensitivity and specificity of the MTBDRsl assay were respectively 70.3% and 97.7% for OFX, 25.0% and 98.7% for KM, 21.2% and 98.7% for CPM and 56.3% and 56.0% for EMB. DNA sequencing identified mutations that were not detected by the MTBDRsl assay. The 8/11 phenotypically OFX-resistant isolates had mutations in gyrA (2/8 had an additional mutation in the gyrB gene), 1/11 had mutations only in the gyrB gene, 6/21 phenotypically KM-resistant isolates had mutations in the rrs gene, and 7/26 and 20/26 phenotypically CPM-resistant isolates had mutations in the rrs and tlyA genes. CONCLUSION The MTBDRsl assay showed lower sensitivity than previous studies. The assay performed favourably for OFX; however, it was less sensitive in the detection of KM/CPM resistance and demonstrated low sensitivity and specificity for EMB resistance. It is recommended that the MTBDRsl assay include additional genes to achieve better sensitivity for all the drugs tested.
Journal of Clinical Microbiology | 2016
Ruvandhi R. Nathavitharana; Doris Hillemann; Samuel G. Schumacher; Birte Schlueter; Nazir Ismail; Shaheed V. Omar; Welile Sikhondze; Joshua Havumaki; Eloise Valli; Catharina Boehme; Claudia M. Denkinger
ABSTRACT Less than 30% of multidrug-resistant tuberculosis (MDR-TB) patients are currently diagnosed, due to laboratory constraints. Molecular diagnostics enable rapid and simplified diagnosis. Newer-version line probe assays have not been evaluated against the WHO-endorsed Hain GenoType MTBDRplus (referred to as Hain version 1 [V1]) for the rapid detection of rifampin (RIF) and isoniazid (INH) resistance. A two-phase noninferiority study was conducted in two supranational reference laboratories to allow head-to-head comparisons of two new tests, Hain Genotype MTBDRplus version 2 (referred to as Hain version 2 [V2]) and Nipro NTM+MDRTB detection kit 2 (referred to as Nipro), to Hain V1. In phase 1, the results for 379 test strains were compared to a composite reference standard that used phenotypic drug susceptibility testing (DST) and targeted sequencing. In phase 2, the results for 644 sputum samples were compared to a phenotypic DST reference standard alone. Using a challenging set of strains in phase 1, the values for sensitivity and specificity for Hain V1, Hain V2, and Nipro, respectively, were 90.3%/98.5%, 90.3%/98.5%, and 92.0%/98.5% for RIF resistance detection and 89.1%/99.4%, 89.1%/99.4%, and 89.6%/100.0% for INH resistance detection. Testing of sputa in phase 2 yielded values for sensitivity and specificity of 97.1%/97.1%, 98.2%/97.8%, and 96.5%/97.5% for RIF and 94.4%/96.4%, 95.4%/98.8%, and 94.9%/97.6% for INH. Overall, the rates of indeterminate results were low, but there was a higher rate of indeterminate results with Nipro than with Hain V1 and V2 in samples with low smear grades. Noninferiority of Hain V2 and Nipro to Hain V1 was demonstrated for RIF and INH resistance detection in isolates and sputum specimens. These results serve as evidence for WHO policy recommendations on the use of line probe assays, including the Hain V2 and Nipro assays, for MDR-TB detection.
Samj South African Medical Journal | 2009
T.M. Habte; S. Dube; Nazir Ismail; Anwar Ahmed Hoosen
AIM To investigate the profile of common uropathogens isolated from urine specimens submitted to the diagnostic microbiology laboratory at a tertiary teaching hospital and assess their antimicrobial susceptibility patterns to commonly used antimicrobial agents. METHODS We conducted a retrospective analysis of laboratory reports for all urine specimens submitted for investigations over a 1-year period. Isolates were tested by means of the Kirby-Bauer disc diffusion method for susceptibility to amoxicillin, ciprofloxacin, gentamicin, co-trimoxazole and nitrofurantoin, and for extended-spectrum beta-lactamase (ESBL) production. RESULTS Out of the total specimens (N=2,203) received over the 1-year study period, 51.1% (1,126) of the urine samples were culture-positive, the majority (65.4%) having come from females. The most common isolate was Escherichia coli (39.0%) followed by Klebsiella species (20.8%) and Enterococcus faecalis (8.2%). The Gram-negative isolates displayed a very high level of resistance to amoxicillin (range 43 - 100%) and co-trimoxazole (range 29 - 90%), whereas resistance to gentamicin (range 0 - 50%) and ciprofloxacin (range 0 - 33%) was lower. E. coli isolates were susceptible to nitrofurantoin (94%), and ESBL production was significantly higher (p=0.01) in the hospital isolates, compared with those from the community referral sites. CONCLUSIONS The culture-positive rate for uropathogens was high, with a greater incidence among females. E. coli was the most common aetiological agent identified, and remained susceptible to nitrofurantoin. Resistance levels to amoxicillin and co-trimoxazole were very high for all Gram-negative isolates, and it is recommended that these antibiotics should not be used for the empiric treatment of urinary tract infections.
Lancet Infectious Diseases | 2015
Ananta Nanoo; Alane Izu; Nazir Ismail; Chikwe Ihekweazu; Ibrahim Abubakar; David Mametja; Shabir A. Madhi
BACKGROUND South Africa has the highest incidence of tuberculosis in the world, largely resulting from a high population prevalence of HIV infection. We investigated the incidence of microbiologically confirmed pulmonary tuberculosis, and new cases of pulmonary tuberculosis registered for treatment, nationally and provincially in South Africa from 2004 to 2012, during which time there were changes in antiretroviral therapy (ART) coverage among individuals with HIV infection. METHODS We identified cases of microbiologically confirmed pulmonary tuberculosis from 2004 to 2012 from the National Health Laboratory Service Corporate Data Warehouse. New cases registered for treatment were identified from National Department of Health electronic registries. A time series analysis, using autoregressive models, was undertaken on incidence of microbiologically confirmed pulmonary disease nationally and provincially; this trend was also examined relative to ART coverage of adults with HIV infection. FINDINGS During the 9-year period, 3 523 371 cases of microbiologically confirmed pulmonary tuberculosis were recorded nationally. Annual incidence (per 100 000 population) increased from 650 (95% CI 648-652) in 2004 to 848 (845-850) in 2008, declining to 774 (771-776) by 2012 (9% decrease from 2008 to 2012). Incidence varied by age-group, sex, and province. There was an inverse association between incidence of microbiologically confirmed disease and ART coverage among HIV-infected individuals nationally and provincially. Trends in incidence of tuberculosis cases registered for treatment mirrored those of microbiologically confirmed cases nationally and provincially; however, incidence of microbiologically confirmed cases was consistently higher than cases registered for treatment nationally and in seven of nine provinces. INTERPRETATION Since its peak in 2008, the incidence of microbiologically confirmed pulmonary tuberculosis in South Africa had declined by 2012; this decline is associated with an increase in ART coverage. Future integration of registries for microbiologically confirmed cases and new cases registered for treatment would improve the assessment of the burden of pulmonary tuberculosis in South Africa. FUNDING National Institute for Communicable Diseases: Division of the National Health Laboratory Service, South Africa.