Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nazish Sayed is active.

Publication


Featured researches published by Nazish Sayed.


Cell | 2012

Activation of Innate Immunity is Required for Efficient Nuclear Reprogramming

Jieun Lee; Nazish Sayed; Arwen L. Hunter; Kin Fai Au; Wing Hung Wong; Edward S. Mocarski; Renee A. Reijo Pera; Eduard Yakubov; John P. Cooke

Retroviral overexpression of reprogramming factors (Oct4, Sox2, Klf4, c-Myc) generates induced pluripotent stem cells (iPSCs). However, the integration of foreign DNA could induce genomic dysregulation. Cell-permeant proteins (CPPs) could overcome this limitation. To date, this approach has proved exceedingly inefficient. We discovered a striking difference in the pattern of gene expression induced by viral versus CPP-based delivery of the reprogramming factors, suggesting that a signaling pathway required for efficient nuclear reprogramming was activated by the retroviral, but not CPP approach. In gain- and loss-of-function studies, we find that the toll-like receptor 3 (TLR3) pathway enables efficient induction of pluripotency by viral or mmRNA approaches. Stimulation of TLR3 causes rapid and global changes in the expression of epigenetic modifiers to enhance chromatin remodeling and nuclear reprogramming. Activation of inflammatory pathways are required for efficient nuclear reprogramming in the induction of pluripotency.


The EMBO Journal | 2007

NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism.

Xiaolei Ma; Nazish Sayed; Annie Beuve; Focco van den Akker

Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200‐fold compared with only four‐fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H‐NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO‐bound, and CO‐bound H‐NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N‐terminal subdomain of H‐NOX to shift concurrent with the transition of the six‐ to five‐coordinated NO‐bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H‐NOX homolog.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation

Nazish Sayed; Padmamalini Baskaran; Xiaolei Ma; Focco van den Akker; Annie Beuve

The molecular mechanism of desensitization of soluble guanylyl cyclase (sGC), the NO receptor, has long remained unresolved. Posttranslational modification and redox state have been postulated to affect sGC sensitivity to NO but evidence has been lacking. We now show that sGC can be S-nitrosylated in primary aortic smooth muscle cells by S-nitrosocysteine (CSNO), an S-nitrosylating agent, in human umbilical vein endothelial cells after vascular endothelial growth factor treatment and in isolated aorta after sustained exposure to acetylcholine. Importantly, we show that S-nitrosylation of sGC results in decreased responsiveness to NO characterized by loss of NO-stimulated sGC activity. Desensitization of sGC is concentration- and time-dependent on exposure to CSNO, and sensitivity of sGC to NO can be restored and its S-nitrosylation prevented with cellular increase of thiols. We confirm in vitro with semipurified sGC that S-nitrosylation directly causes desensitization, suggesting that other cellular factors are not required. Two potential S-nitrosylated cysteines in the α- and β-subunits of sGC were identified by MS. Replacement of these cysteines, C243 in α and C122 in β, created mutants that were mostly resistant to desensitization. Structural analysis of the region near β-C122 in the homologous Nostoc H-NOX crystal structure indicates that this residue is in the vicinity of the heme and its S-nitrosylation could dampen NO activation by affecting the positions of key residues interacting with the heme. This study suggests that S-nitrosylation of sGC is a means by which memory of NO exposure is kept in smooth muscle cells and could be a mechanism of NO tolerance.


Circulation Research | 2008

Nitroglycerin-Induced S-nitrosylation and Desensitization of Soluble Guanylyl Cyclase Contribute to Nitrate Tolerance

Nazish Sayed; David D. Kim; Xavier Fioramonti; Toru Iwahashi; Walter N. Durán; Annie Beuve

Nitrates such as nitroglycerin (GTN) and nitric oxide donors such as S-nitrosothiols are clinically vasoactive through stimulation of soluble guanylyl cyclase (sGC), which produces the second messenger cGMP. Development of nitrate tolerance, after exposure to GTN for several hours, is a major drawback to a widely used cardiovascular therapy. We recently showed that exposure to nitric oxide and to S-nitrosothiols causes S-nitrosylation of sGC, which directly desensitizes sGC to stimulation by nitric oxide. We tested the hypothesis that desensitization of sGC by S-nitrosylation is a mechanism of nitrate tolerance. Our results established that vascular tolerance to nitrates can be recapitulated in vivo by S-nitrosylation through exposure to cell membrane-permeable S-nitrosothiols and that sGC is S-nitrosylated and desensitized in the tolerant, treated tissues. We next determined that (1) GTN treatment of primary aortic smooth muscle cells induces S-nitrosylation of sGC and its desensitization as a function of GTN concentration; (2) S-nitrosylation and desensitization are prevented by treatment with N-acetyl-cysteine, a precursor of glutathione, used clinically to prevent development of nitrate tolerance; and (3) S-nitrosylation and desensitization are reversed by cessation of GTN treatment. Finally, we demonstrated that in vivo development of nitrate tolerance and crosstolerance by 3-day chronic GTN treatment correlates with S-nitrosylation and desensitization of sGC in tolerant tissues. These results suggest that in vivo nitrate tolerance is mediated, in part, by desensitization of sGC through GTN-dependent S-nitrosylation.


Journal of Biological Chemistry | 2008

PAS-mediated Dimerization of Soluble Guanylyl Cyclase Revealed by Signal Transduction Histidine Kinase Domain Crystal Structure

Xiaolei Ma; Nazish Sayed; Padmamalini Baskaran; Annie Beuve; Focco van den Akker

Signal transduction histidine kinases (STHK) are key for sensing environmental stresses, crucial for cell survival, and attain their sensing ability using small molecule binding domains. The N-terminal domain in an STHK from Nostoc punctiforme is of unknown function yet is homologous to the central region in soluble guanylyl cyclase (sGC), the main receptor for nitric oxide (NO). This domain is termed H-NOXA (or H-NOBA) because it is often associated with the heme-nitric oxide/oxygen binding (H-NOX) domain. A structure-function approach was taken to investigate the role of H-NOXA in STHK and sGC. We report the 2.1Å resolution crystal structure of the dimerized H-NOXA domain of STHK, which reveals a Per-Arnt-Sim (PAS) fold. The H-NOXA monomers dimerize in a parallel arrangement juxtaposing their N-terminal helices and preceding residues. Such PAS dimerization is similar to that previously observed for EcDOS, AvNifL, and RmFixL. Deletion of 7 N-terminal residues affected dimer organization. Alanine scanning mutagenesis in sGC indicates that the H-NOXA domains of sGC could adopt a similar dimer organization. Although most putative interface mutations did decrease sGCβ1 H-NOXA homodimerization, heterodimerization of full-length heterodimeric sGC was mostly unaffected, likely due to the additional dimerization contacts of sGC in the coiled-coil and catalytic domains. Exceptions are mutations sGCα1 F285A and sGCβ1 F217A, which each caused a drastic drop in NO stimulated activity, and mutations sGCα1 Q368A and sGCβ1 Q309A, which resulted in both a complete lack of activity and heterodimerization. Our structural and mutational results provide new insights into sGC and STHK dimerization and overall architecture.


Science Translational Medicine | 2017

High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells

Arun Sharma; Paul W. Burridge; Wesley L. McKeithan; Ricardo Serrano; Praveen Shukla; Nazish Sayed; Jared M. Churko; Tomoya Kitani; Haodi Wu; Alexandra Holmström; Elena Matsa; Yuan Zhang; Anusha Kumar; Alice C. Fan; Juan C. del Álamo; Sean M. Wu; Javid Moslehi; Mark Mercola; Joseph C. Wu

High-throughput screening of drugs with human induced pluripotent stem cell–derived cardiomyocytes reveals a “cardiac safety index.” Failing fast for tyrosine kinase inhibitors Discovery early in its life cycle that an anticancer drug causes heart damage (a common side effect) can halt development—saving money, time, and perhaps lives. To this end, Sharma and colleagues derived heart cells from human induced pluripotent stem cells and then examined how a battery of anticancer tyrosine kinase inhibitors altered their physiology. By measuring cell death, contraction, excitability, calcium dynamics, and signal transduction and integrating the results, they calculated a drug-specific “cardiac safety index.” This index proved highly informative, with low values corresponding to those drugs known to cause heart problems in patients. The analysis even revealed that VEGFR2-inhibiting drugs caused cells to try to compensate for the toxic effects by up-regulating protective insulin/IGF pathways, prompting the authors to devise a combination treatment that may limit the toxicity of this class of drug. This screening method is expected to reveal early on whether potential anticancer drugs are cardiotoxic. Tyrosine kinase inhibitors (TKIs), despite their efficacy as anticancer therapeutics, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We used human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen U.S. Food and Drug Administration–approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a “cardiac safety index” to reflect the cardiotoxicities of existing TKIs. TKIs with low cardiac safety indices exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type–specific cardiotoxicities. Using high-throughput screening, we determined that vascular endothelial growth factor receptor 2 (VEGFR2)/platelet-derived growth factor receptor (PDGFR)–inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. With phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Up-regulating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during cotreatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anticancer TKIs, and the results correlate with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.


Circulation | 2015

Transdifferentiation of Human Fibroblasts to Endothelial Cells Role of Innate Immunity

Nazish Sayed; Wing Tak Wong; Frank Ospino; Shu Meng; Jieun Lee; Arshi Jha; Phillip Dexheimer; Bruce J. Aronow; John P. Cooke

Background— Cell fate is fluid and may be altered experimentally by the forced expression of master regulators mediating cell lineage. Such reprogramming has been achieved with the use of viral vectors encoding transcription factors. We recently discovered that the viral vectors are more than passive vehicles for transcription factors because they participate actively in the process of nuclear reprogramming to pluripotency by increasing epigenetic plasticity. On the basis of this recognition, we hypothesized that small-molecule activators of toll-like receptor 3, together with external microenvironmental cues that drive endothelial cell (EC) specification, might be sufficient to induce transdifferentiation of fibroblasts into ECs (induced ECs). Methods and Results— We show that toll-like receptor 3 agonist Poly I:C, combined with exogenous EC growth factors, transdifferentiated human fibroblasts into ECs. These induced ECs were comparable to human dermal microvascular ECs in immunohistochemical, genetic, and functional assays, including the ability to form capillary-like structures and to incorporate acetylated low-density lipoprotein. Furthermore, induced ECs significantly improved limb perfusion and neovascularization in the murine ischemic hindlimb. Finally, using genetic knockdown studies, we found that the effective transdifferentiation of human fibroblasts to ECs requires innate immune activation. Conclusions— This study suggests that manipulation of innate immune signaling may be generally used to modify cell fate. Because similar signaling pathways are activated by damage-associated molecular patterns, epigenetic plasticity induced by innate immunity may play a fundamental role in transdifferentiation during wound healing and regeneration. Finally, this study is a first step toward development of a small-molecule strategy for therapeutic transdifferentiation for vascular disease.


Pharmacological Research | 2012

NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltage-sensitive Ca2+ channel.

Xiao Yu Tian; Wing Tak Wong; Nazish Sayed; Jialie Luo; Suk Ying Tsang; Zhaoxiang Bian; Ye Lu; Wai San Cheang; Xiaoqiang Yao; Zhen-Yu Chen; Yu Huang

H(2)S, a gaseous signalling molecule, relaxes blood vessels partly through activation of ATP-sensitive K(+) channels. It is however unclear whether H(2)S or its donors could affect other ion transporting proteins. The present study examined the hypothesis that NaHS, a H(2)S donor inhibits voltage-sensitive Ca(2+) channels and thus relaxes vascular smooth muscle cells (VSMC) in the cerebral arteries. NaHS dilated cerebral arteries from Sprague-Dawley rats with the same potency against pre-contraction by 5-HT and 60 mmol/L KCl, which were unaffected by several K(+) channel blockers, N(G)-nitro-l-arginine methyl ester or indomethacin, as assessed in wire myograph under an isometric condition. Likewise, NaHS also dilated cerebral arteries against myogenic constriction in pressurized myograph under an isobaric condition. NaHS concentration-dependently inhibited CaCl(2)-induced contraction in Ca(2+)-free, 60mM K(+)-containing Krebs solution. Patch clamp recordings showed that NaHS reduced the amplitude of l-type Ca(2+) currents in single myocytes isolated enzymatically from the cerebral artery. Calcium fluorescent imaging using fluo-4 showed a reduced [Ca(2+)](i) in 60 mmol/L KCl-stimulated rat cerebral arteries in response to NaHS. H(2)S precursor l-cysteine-induced relaxation in cerebral arteries was inhibited by cystathionine γ-lyase (CSE) inhibitor dl-propargylglycine. CSE was expressed in cerebral arteries. In summary, NaHS dilates rat cerebral arteries by reducing l-type Ca(2+) currents and suppressing [Ca(2+)](i) of arterial myocyte, indicating that NaHS relaxes cerebral arteries primarily through inhibiting Ca(2+) influx via Ca(2+) channels.


Circulation Research | 2012

Endothelial Cells Derived From Nuclear Reprogramming

Wing Tak Wong; Ngan F. Huang; Crystal M. Botham; Nazish Sayed; John P. Cooke

The endothelium plays a pivotal role in vascular homeostasis, regulating the tone of the vascular wall, and its interaction with circulating blood elements. Alterations in endothelial functions facilitate the infiltration of inflammatory cells and permit vascular smooth muscle proliferation and platelet aggregation. Therefore, endothelial dysfunction is an early event in disease processes including atherosclerosis, and because of its critical role in vascular health, the endothelium is worthy of the intense focus it has received. However, there are limitations to studying human endothelial function in vivo, or human vascular segments ex vivo. Thus, methods for endothelial cell (EC) culture have been developed and refined. Recently, methods to derive ECs from pluripotent cells have extended the scientific range of human EC studies. Pluripotent stem cells may be generated, expanded, and then differentiated into ECs for in vitro studies. Constructs for molecular imaging can also be employed to facilitate tracking these cells in vivo. Furthermore, one can generate patient-specific ECs to study the effects of genetic or epigenetic alterations on endothelial behavior. Finally, there is the opportunity to apply these cells for vascular therapy. This review focuses on the generation of ECs from stem cells; their characterization by genetic, histological, and functional studies; and their translational applications.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Protein Kinase G Phosphorylates Soluble Guanylyl Cyclase on Serine 64 and Inhibits Its Activity

Zongmin Zhou; Nazish Sayed; Anastasia Pyriochou; Charis Roussos; David Fulton; Annie Beuve; Andreas Papapetropoulos

Objective—Binding of nitric oxide (NO) to soluble guanylyl cyclase (sGC) leads to increased cGMP synthesis that activates cGMP-dependent protein kinase (PKG). Herein, we tested whether sGC activity is regulated by PKG. Methods and Results—Overexpression of a constitutively active form of PKG (&Dgr;PKG) stimulated 32P incorporation into the α1 subunit. Serine to alanine mutation of putative sites revealed that Ser64 is the main phosphorylation site for PKG. Using a phospho-specific antibody we observed that endogenous sGC phosphorylation on Ser 64 increases in cells and tissues exposed to NO, in a PKG-inhibitable manner. Wild-type (wt) sGC coexpressed with &Dgr;PKG exhibited lower basal and NO-stimulated cGMP accumulation, whereas the S64A α1/β1 sGC was resistant to the PKG-induced reduction in activity. Using purified sGC we observed that the S64D α1 phosphomimetic /β1 dimer exhibited lower Vmax; moreover, the decrease in Km after NO stimulation was less pronounced in S64D α1/β1 compared to wild-type sGC. Expression of a phosphorylation-deficient sGC showed enhanced responsiveness to endothelium-derived NO, reduced desensitization to acute NO exposure, and allowed for greater VASP phosphorylation. Conclusions—We conclude that PKG phosphorylates sGC on Ser64 of the α1 subunit and that phosphorylation inhibits sGC activity, establishing a negative feedback loop.

Collaboration


Dive into the Nazish Sayed's collaboration.

Top Co-Authors

Avatar

John P. Cooke

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wing Tak Wong

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jieun Lee

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Ospino

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce J. Aronow

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shu Meng

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge