Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nazzareno Ballatori is active.

Publication


Featured researches published by Nazzareno Ballatori.


Toxicological Sciences | 1985

Biliary secretion of glutathione and of glutathione-metal complexes☆

Nazzareno Ballatori; Thomas W. Clarkson

As bile is the main route of elimination of many metals, a large number of studies have been directed toward the characterization of the hepatobiliary transport of both endogenous and exogenous metals. Although some progress has been made, we still know little of the basic mechanisms involved in the hepatocellular uptake of metals, in their intracellular translocation and metabolism, or in their transport into bile. Our recent studies have focused on the last step in the hepatobiliary transport of mercury, namely, the secretion of the metal from liver cells into bile. The rate of secretion of methyl and inorganic mercury into bile was low in suckling rats and rapidly increased to adult rates soon after weaning. These changes closely followed similar developmental changes in the biliary secretion of reduced glutathione (GSH). When GSH secretion into bile was completely inhibited, without changing hepatic levels of GSH or mercury, mercury secretion was also completely blocked. Mercury secretion paralleled individual and sex-related differences in GSH secretion. At the same time, the secretion of mercury was independent of bile flow, of the thiol and mercury concentration gradients between bile and liver cells, and of those between bile and plasma. Our results, therefore, indicate a close coupling between the secretion of mercury and that of GSH. These in vivo findings, along with in vitro studies by others in vesicles isolated from the canalicular membrane of the liver cell, indicate a carrier-mediated transport system for GSH, but the nature of the linkage of this transport system with mercury secretion is not yet fully established. Our data and those in the literature are consistent with the involvement of at least two steps in the movement of mercury from liver cells to bile--the formation of a mercury-glutathione complex in the liver cell, followed by the secretion of this complex through a process closely linked to GSH secretion. The identification of GSH as an endogenous complexing agent in the transport of metals between tissues and body fluids now permits the design of therapeutic strategies aimed at exploiting this transport vehicle to effect the removal of metals via physiological routes of excretion. The present discussion considers the role of GSH in the hepatobiliary transport of metals. In doing so, a brief review is given of current understanding of hepatic GSH metabolism and transport.


Toxicology and Applied Pharmacology | 1988

Altered plasma membrane ion permeability in mercury-induced cell injury: Studies in hepatocytes of elasmobranch Raja erinacea

Nazzareno Ballatori; Chenyang Shi; James L. Boyer

The effects of HgCl2, CH3HgCl, p-chloromercuribenzene sulfonate (PCMBS), and CdCl2 on plasma membrane and cell metabolic functions of skate (Raja erinacea) hepatocytes in suspension culture were assessed by measuring (a) the rates of Na+-dependent and -independent L-[14C]alanine uptake, (b) Na+-dependent 86Rb+ uptake, a measure of Na-K-ATPase activity, (c) 86Rb+ efflux, a measure of K+ permeability, (d) the difference between the 3H2O and [14C]inulin distribution spaces, a measure of intracellular water volume, (e) cellular ATP concentrations, and (f) glutathione (GSH) and glutathione disulfide (GSSG) levels. The initial rates of L-alanine and 86Rb+ uptake were inhibited by each of these metals in the following order: HgCl2 greater than CH3HgCl greater than PCMBS greater than CdCl2. Inorganic mercury significantly inhibited the initial rates of Na+-dependent L-alanine and 86Rb uptakes at a concentration of 10 microM, whereas 100 microM produced nearly complete inhibition. These effects were dose-dependent, immediate (observed after less than 5 min of incubation with the metal), and persistent. Mercuric chloride also impaired volume regulatory mechanisms in skate hepatocytes: cells treated with 50 microM HgCl2 swelled slowly over a 60-min interval to volumes nearly double those of control cells. In addition, HgCl2 prevented the normal volume regulatory decrease observed after swelling the hepatocytes in hypotonic media. Mercuric chloride (5-50 microM) produced a rapid initial loss of a large fraction of intracellular 86Rb, followed by a slower rate of release of the remaining isotope. These effects were prevented if GSH was added with, but not following HgCl2. In contrast, dithiothreitol, a more permeable thiol, both prevented and even partially reversed the effects of mercury. Mercuric chloride (10 microM) had no effect on cellular ATP, GSH, or GSSG levels for up to 4 hr incubation. These findings indicate that 86Rb+ (K+) efflux is a sensitive indicator of mercury toxicity, and are consistent with the hypothesis that the plasma membrane is a primary target for mercurys effects. A change in membrane permeability to K+ would dissipate transmembrane electrochemical gradients, and may contribute to the apparent inhibition of transport processes energized by these gradients, such as Na+-alanine cotransport, and volume regulatory mechanisms.


Journal of Biological Chemistry | 2000

A Primitive ATP Receptor from the Little Skate Raja erinacea

Jonathan A. Dranoff; Allison F. O'Neill; Ann Marie Franco; Shi-Ying Cai; Gregory C. Connolly; Nazzareno Ballatori; James L. Boyer; Michael H. Nathanson

P2Y ATP receptors are widely expressed in mammalian tissues and regulate a broad range of activities. Multiple subtypes of P2Y receptors have been identified and are distinguished both on a molecular basis and by pharmacologic substrate preference. Functional evidence suggests that hepatocytes from the little skateRaja erinacea express a primitive P2Y ATP receptor lacking pharmacologic selectivity, so we cloned and characterized this receptor. Skate hepatocyte cDNA was amplified with degenerate oligonucleotide probes designed to identify known P2Y subtypes. A single polymerase chain reaction product was found and used to screen a skate liver cDNA library. A 2314-base pair cDNA clone was generated that contained a 1074-base pair open reading frame encoding a 357-amino acid gene product with 61–64% similarity to P2Y1 receptors and 21–37% similarity to other P2Y receptor subtypes. Pharmacology of the putative P2Y receptor was examined using the Xenopus oocyte expression system and revealed activation by a range of nucleotides. The receptor was expressed widely in skate tissue and was expressed to a similar extent in other primitive organisms. Phylogenetic analysis suggested that this receptor is closely related to a common ancestor of the P2Y subtypes found in mammals, avians, and amphibians. Thus, the skate liver P2Y receptor functions as a primitive P2Y ATP receptor with broad pharmacologic selectivity and is related to the evolutionary forerunner of P2Y1 receptors of higher organisms. This novel receptor should provide an effective comparative model for P2Y receptor pharmacology and may improve our understanding of nucleotide specificity among the family of P2Y ATP receptors.


Journal of Clinical Investigation | 1987

Ursodeoxycholate stimulates Na+-H+ exchange in rat liver basolateral plasma membrane vesicles.

Richard H. Moseley; Nazzareno Ballatori; Daniel Smith; James L. Boyer

Na+:H+ and Cl-:HCO3- exchange are localized, respectively, to basolateral (blLPM) and canalicular (cLPM) rat liver plasma membranes. To determine whether these exchangers play a role in bile formation, we examined the effect of a choleretic agent, ursodeoxycholate (UDCA), on these exchange mechanisms. 22Na (1 mM) and 36Cl (5 mM) uptake was determined using outwardly directed H+ and HCO3- gradients, respectively. Preincubation of blLPM vesicles with UDCA (0-500 microM) resulted in a concentration-dependent increase in initial rates of amiloride-sensitive pH-driven Na+ uptake, with a maximal effect at 200 microM. UDCA (200 microM) increased Vmax from 23 +/- 2 (control) to 37 +/- 7 nmol/min per mg protein; apparent Km for Na+ was unchanged. Preincubation with tauroursodeoxycholate (200 microM), taurocholate (10-200 microM) or cholate, chenodeoxycholate, or deoxycholate (200 microM) had no effect on pH-driven Na+ uptake. UDCA (200 microM) had no effect on either membrane lipid fluidity, assessed by steady-state fluorescence polarization using the probes 1,6-diphenyl-1,3,5-hexatriene, 12-(9-anthroyloxy) stearic acid, and 2-(9-anthroyloxy) stearic acid (2-AS), or Na+,K+-ATPase activity in blLPM vesicles. In cLPM vesicles, UDCA (0-500 microM) had no stimulatory effect on initial rates of HCO3(-)-driven Cl- uptake. Enhanced basolateral Na+:H+ exchange activity, leading to intracellular HCO3- concentrations above equilibrium, may account for the bicarbonate-rich choleresis after UDCA infusion.


Toxicology and Applied Pharmacology | 1986

Slow biliary elimination of methyl mercury in the marine elasmobranchs, Raja erinacea and Squalus acanthias

Nazzareno Ballatori; James L. Boyer

The present study examined the ability of two marine elasmobranchs (Raja erinacea, little skate, and Squalus acanthias, spiny dogfish shark) to excrete methyl mercury into bile, a major excretory route in mammals. 203Hg-labeled methyl mercury chloride was administered via the caudal vein, and bile collected through exteriorized cannulas in the free swimming fish. Skates and dogfish sharks excreted only a small fraction of the 203Hg into bile over a 3-day period: in the skate, the 3-day cumulative excretion (as a % of dose) was 0.44 +/- 0.10 (n = 4, +/- SD), 0.71 +/- 0.23 (n = 6), and 1.00 +/- 0.34(n = 4) for doses of 1, 5, and 20 mumol/kg, respectively, while the shark excreted only 0.15 +/- 0.15% (n = 8) at a dose of 5 mumol/kg. As in mammals, the availability of hepatic and biliary glutathione was a determinant of the biliary excretion of methyl mercury in these species: the administration of sulfobromophthalein, a compound known to inhibit both glutathione and methyl mercury excretion in rats, or of L-buthionine-S,R-sulfoximine, an inhibitor of glutathione biosynthesis, decreased the biliary excretion of both glutathione and mercury in the skate. The slow hepatic excretory process for methyl mercury in the skate and shark was attributed to an inordinately slow rate of bile formation: from 1 to 4 ml/kg X day. An inefficient biliary excretory process in fish may account in part for the long biological half-times for methyl mercury in marine species.


Journal of Biological Chemistry | 1986

Intrabiliary glutathione hydrolysis. A source of glutamate in bile.

Nazzareno Ballatori; R. Jacob; James L. Boyer


Molecular Pharmacology | 1995

ATP depletion and inactivation of an ATP-sensitive taurine channel by classic ion channel blockers.

Nazzareno Ballatori; A. T. Truong; P. S. Jackson; Kevin Strange; James L. Boyer


Journal of Biological Chemistry | 1986

Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles.

Nazzareno Ballatori; Richard H. Moseley; James L. Boyer


Hepatology | 1987

The effect of changes in the fluid state of rat liver plasma membrane on the transport of taurocholate

Peter R. Mills; Peter J. Meier; Daniel Smith; Nazzareno Ballatori; James L. Boyer; Ellen R. Gordon


American Journal of Physiology-gastrointestinal and Liver Physiology | 1988

Biliary catabolism of glutathione and differential reabsorption of its amino acid constituents

Nazzareno Ballatori; R. Jacob; Carolyn Barrett; James L. Boyer

Collaboration


Dive into the Nazzareno Ballatori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Miller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge