Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neal R. Pettigrew is active.

Publication


Featured researches published by Neal R. Pettigrew.


Deep-sea Research Part I-oceanographic Research Papers | 1994

Causes and consequences of variability in the timing of spring phytoplankton blooms

David W. Townsend; Lm Cammen; Patrick M. Holligan; Daniel E Campbell; Neal R. Pettigrew

Abstract Established conceptual models of the initiation and progression of spring phytoplankton blooms are reconsidered in light of recent observations. We use biological simulation modelling as a tool for the analysis of spring plankton blooms in shallow, coastal waters in temperate latitudes of the North Atlantic. The model shows that interannual variability in the timing of bloom initiation arises from year-to-year differences in incident irradiation, as determined by weather (cloudiness). This variability in timing results in some years when the spring bloom occurs in cold water temperatures near 0°C. Model results suggest that due to low temperature inhibition of heterotrophic consumption, more fresh organic material is delivered to the benthos in these cold-water blooms than when the bloom occurs in waters only 3°C warmer. Thus we suggest that variable bloom timing can be important to the trophodynamic fate of bloom products. We suggest that variability in timing of spring phytoplankton blooms in offshore and open ocean waters is also related to weather, through controls on the light field and wind mixing. Our analyses of wind-driven vertical mixing demonstrate such blooms can begin following the winter period of deep convection, and prior to the vernal development of stratification, provided that wind speed is below a certain, predictable threshold, which we estimate. In such cases, there may be several spring bloom pulses, each interrupted by self-shading light limitation or vertical mixing events. Eventually the seasonal thermocline develops and nutrient exhaustion curtails bloom production. This means that the spring phytoplankton bloom in offshore and open ocean areas may be significantly more productive, result in more export production, and be more important to the carbon cycle, than has been previously assumed. Furthermore, these features of temperate marine planktonic ecosystems are not only sensitive to annual variations in weather, but also any trends that might result from greenhouse warming or other factors that affect the climate system.


Continental Shelf Research | 2001

Offshore blooms of the red tide dinoflagellate, Alexandrium sp., in the Gulf of Maine

David W. Townsend; Neal R. Pettigrew; Andrew C. Thomas

Paralytic shellfish poisoning (PSP) occurs nearly every year in the Gulf of Maine. In a study of dynamics of the causative organism, the toxic dinoflagellate Alexandrium sp., we conducted three surveys of the coastal and oshore waters of Gulf of Maine during the summer of 1998, sampling more than 200 stations during each cruise in June, July and August. Hydrographic data were collected and concentrations of phytoplankton chlorophyll, inorganic nutrients and densities of Alexandrium cells were measured in discrete water samples. The distributions of Alexandrium at the surface and in subsurface waters displayed maximum cell densities in the oshore waters of the Gulf on all three cruises. Highest cell densities in surface waters (ca. 5.510 3 cellsl ˇ1 ) were observed in two broad patches: one in the Bay of Fundy and another in shelf and oshore waters of the central and eastern Gulf of Maine in association with the Eastern Maine Coastal Current. Highest subsurface densities of cells appeared to be associated with the frontal edges beyond the cold surface waters associated with the Eastern Maine Coastal Current. As the summer progressed, the highest surface densities of Alexandrium receded toward the eastern portions of the Gulf and the Bay of Fundy. We suggest that the oshore distributions of relatively high densities of Alexandrium are naturally occurring and can be related to inorganic nutrient fluxes, and to the ambient light field as it varies seasonally and vertically. Locations of high cell densities were described and interpreted using a nondimensional light-nutrient parameter, computed as the ratio of the depth of the 10% surface irradiance to the depth of 4mMNO3 concentration. Possible mechanisms responsible for periodic development of PSP outbreaks in nearshore shellfish beds are discussed. # 2001 Elsevier Science Ltd. All rights reserved.


Journal of Geophysical Research | 1998

Observations of the Eastern Maine Coastal Current and its offshore extensions in 1994

Neal R. Pettigrew; David W. Townsend; Huijie Xue; John P. Wallinga; Peter Brickley; Robert D. Hetland

Cold surface temperatures, reflecting Scotian Shelf origins and local tidal mixing, serve as a tracer of the Eastern Maine Coastal Current and its offshore extensions, which appear episodically as cold plumes erupting from the eastern Maine shelf. A cold water plume emanating from the Eastern Maine Coastal Current in May 1994 was investigated using advanced very high resolution radiometer (AVHRR) imagery, shipboard surveys of physical and biochemical properties, and satellite-tracked drifters. Evidence is presented that suggests that some of the plume waters were entrained within the cyclonic circulation over Jordan Basin, while the major portion participated in an anticyclonic eddy at the distal end of the plume. Calculations of the nitrate transported offshore by the plume show that this feature can episodically export significant quantities of nutrients from the Eastern Maine Coastal Current to offshore regions that are generally nutrient depleted during spring-summer. A series of AVHRR images is used to document the seasonal along-shelf progression of the coastal plume separation point. We speculate on potential causes and consequences of plume separation from the coastal current and suggest that this feature may be an important factor influencing the patterns and overall biological productivity of the eastern Gulf of Maine.


Journal of Physical Oceanography | 2000

A Model Study of the Seasonal Circulation in the Gulf of Maine

Huijie Xue; Fei Chai; Neal R. Pettigrew

The Princeton Ocean Model is used to study the circulation in the Gulf of Maine and its seasonal transition in response to wind, surface heat flux, river discharge, and the M2 tide. The model has an orthogonal-curvature linear grid in the horizontal with variable spacing from 3 km nearshore to 7 km offshore and 19 levels in the vertical. It is initialized and forced at the open boundary with model results from the East Coast Forecast System. The first experiment is forced by monthly climatological wind and heat flux from the Comprehensive Ocean Atmosphere Data Set; discharges from the Saint John, Penobscot, Kennebec, and Merrimack Rivers are added in the second experiment; the semidiurnal lunar tide (M2) is included as part of the open boundary forcing in the third experiment. It is found that the surface heat flux plays an important role in regulating the annual cycle of the circulation in the Gulf of Maine. The spinup of the cyclonic circulation between April and June is likely caused by the differential heating between the interior gulf and the exterior shelf/slope region. From June to December, the cyclonic circulation continues to strengthen, but gradually shrinks in size. When winter cooling erodes the stratification, the cyclonic circulation penetrates deeper into the water column. The circulation quickly spins down from December to February as most of the energy is consumed by bottom friction. While inclusion of river discharge changes details of the circulation pattern, the annual evolution of the circulation is largely unaffected. On the other hand, inclusion of the tide results in not only the anticyclonic circulation on Georges Bank but also modifications to the seasonal circulation.


Continental Shelf Research | 2009

Drifter observations of the Gulf of Maine Coastal Current

James P. Manning; Dennis J. McGillicuddy; Neal R. Pettigrew; James H. Churchill; Lewis S. Incze

Two-hundred and twenty seven satellite-tracked drifters were deployed in the Gulf of Maine (GoM) from 1988 to 2007, primarily during spring and summer. The archive of tracks includes over 100,000 kilometers logged thus far. Statistics such as transit times, mean velocities, response to wind events, and preferred pathways are compiled for various areas of the coastal GoM. We compare Lagrangian flow with Eulerian estimates from near-by moorings and evaluate drifter trajectories using Ekman theory and 3-D ocean circulation models. Results indicate that the Gulf of Maine Coastal Current is a strong and persistent feature centered on the 94 ± 23 meter isobath, but that particles: a) deviate from the seasonal-mean core fairly regularly, and are often re-entrained; b) follow a slower (9 cm/s), less-constrained path in the western portion off the coast of Maine relative to the eastern (16 cm/s) section; and c) can be affected by wind events and small scale baroclinic structures. Residence times calculated for each ½ degree grid cell throughout the GoM depict some regions (Eastern Maine and Western Nova Scotia) as being relatively steady, flow-through systems, while others (Penobscot, Great South Channel) have more variable, branching pathways. Travel times for drifters that are retained within the coastal current along the entire western side of the Gulf of Maine are typically less than two months (55 days).


Journal of Physical Oceanography | 1985

The Nantucket Shoals Flux Experiment (NSFE79). Part II: The Structure and Variability of Across-Shelf Pressure Gradients

Wendell S. Brown; Neal R. Pettigrew; James D. Irish

Abstract The Nantucket Shoals Flux Experiment (NSFE) was a collaborative effort to measure the alongshelf transport of mass, heat, salt and nutrients from March 1979 through April 1980 with a dense army consisting of moored current, temperature and bottom pressure instruments in an across-shelf and upper-slope transect south of Nantucket Island. The pressure component of that experiment is described here. Bottom pressure recorders were deployed at stations N1 (46 m), N2 (66 m), N4 (105 m), and N5 (196 m) during two half-year periods. spring–summer 1979 (SUMMER) and fall–winter 1979/80 (WINTER). A synthetic subsurface pressure (SSP) record was formed from atmospheric pressure and sea level observations at Nantucket Island. The low-pass filtered (periods > 36 h) or subtidal pressures were used for the subsequent analysis. It was found that Nantucket SSP and BP are very nearly equivalent for fluctuation periods less than about 50 days if steric changes in sea level, due to density changes above the seasonal ...


Information Visualization | 2008

A framework for visualization and exploration of events

Kate Beard; H. E. Deese; Neal R. Pettigrew

The expanding deployment of sensor systems that capture location, time, and multiple thematic variables is increasing the need for exploratory spatio-temporal data analysis tools. Geographic information systems (GIS) and time series analysis tools support exploration of spatial and temporal patterns respectively and independently, but tools for the exploration of both dimensions within a single system are relatively rare. The contribution of this research is a framework for the visualization and exploration of spatial, temporal, and thematic dimensions of sensor-based data. The unit of analysis is an event, a spatio-temporal data type extracted from sensor data. The conceptual framework suggests an approach for design layout that can be flexibly modified to explore spatial and temporal trends, temporal relationships among events, periodic temporal patterns, the timing of irregularly repeating events, event-event relationships in terms of thematic attributes, and event patterns at different spatial and temporal granularities. Flexible assignment of spatial, temporal, and thematic categories to a set of graphical interface elements that can be easily rearranged provides exploratory power as well as a generalizable design layout structure. The framework is illustrated with events extracted from Gulf of Maine Ocean Observing System data but the approach has broad application to other domains and applications in which time, space, and attributes need to be considered in conjunction.


data engineering for wireless and mobile access | 2007

A drift-tolerant model for data management in ocean sensor networks

Silvia Nittel; Niki Trigoni; Konstantinos P. Ferentinos; Francois Neville; Arda Nural; Neal R. Pettigrew

Traditional means of observing the ocean, like fixed mooring stations and radar systems, are difficult and expensive to deploy and provide coarse-grained and data measurements of currents and waves. In this paper, we explore the use of inexpensive wireless drifters as an alternative flexible infrastructure for fine-grained ocean monitoring. Surface drifters are designed specifically to move passively with the flow of water on the ocean surface and they are able to acquire sensor readings and GPS-generated positions at regular intervals. We view the fleet of drifters as a wireless ad-hoc sensor network with two types of nodes:i) a few powerful drifters with satellite connectivity, acting as mobile base-stations, and ii)a large number of low-power drifters with short-range acoustic or radio connectivity. Using real datasets from the Gulf of Maine (US) and the Liverpool Bay (UK), we study connectivity and uniformity properties of the ad-hoc mobile sensor network. We investigate the effect of deployment strategy, weather conditions as well as seasonal changes on the ability of drifters to relay readings to the end-users,and to provide sufficient sensing coverage of the monitored area. Our empirical study provides useful insights on how to design distributed routing and in-network processing algorithms tailored for ocean-monitoring sensor networks.


Estuaries | 2001

A Variable Turbidity Maximum in the Kennebec Estuary, Maine

Dorothea A. Kistner; Neal R. Pettigrew

A turbidity maximum has been observed in the Kennebec estuary during mode rate and low flow conditions near the upstream limit of salinity intrusion. Hydrographic, ADCP, and transmissometer data were collected at different river flow levels and seasons during 1995–1998. The location of the tip of the salt intrusion changes dramatically and during high runoff may be flushed from the channel of the estuary along with the accumulated particles in the turbidity maximum. It is hypothesized that the estuarine turbidity maximum (ETM) was absent 18% of the time with occurrences in all seasons during 1993–1999 based on river flow volumes from the Kennebec and Androscoggin Rivers throughout the study period. When the flow is moderate and low, which occurred 73% of the time on average, a region of high turbidity can be found as far as 40 km upstream of the mouth. Suspended particulate loads are low in the ETM, on the order of tens of mg l−1 and may vary with the length of time that the ETM has been present.


ieee working conference on current measurement | 1986

Field evaluations of a bottom-mounted acoustic doppler profiler and conventional current meter moorings

Neal R. Pettigrew; James D. Irish; Robert C. Beardsley

The performance of a prototype Doppler Acoustic Profiling Current Meter has been evaluated by comparison with state-of-the-art conventional current meter moorings in the Coastal Ocean Dynamics Experiment and also by consistency checks comparing velocities calculated from data from different combinations of acoustic beams. The RDI Doppler profiler generally yeilds high (lower) speeds than moored VMCMs (VACMs). Comparisons with laboratory calibrations of the mechanical current meters suggest that a large portion of the differences observed in the near-surface region could result from mooring motion and self-wake contamination experienced by the mechanical sensors in oscillatory flow.

Collaboration


Dive into the Neal R. Pettigrew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Irish

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James H. Churchill

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge