Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neal S. Burke is active.

Publication


Featured researches published by Neal S. Burke.


Proceedings of the National Academy of Sciences of the United States of America | 2009

TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells

Catherine W. Morgans; Jianmei Zhang; Brett G. Jeffrey; Steve M. Nelson; Neal S. Burke; Robert M. Duvoisin; R. Lane Brown

The ON pathway of the visual system, which detects increases in light intensity, is established at the first retinal synapse between photoreceptors and ON-bipolar cells. Photoreceptors hyperpolarize in response to light and reduce the rate of glutamate release, which in turn causes the depolarization of ON-bipolar cells. This ON-bipolar cell response is mediated by the metabotropic glutamate receptor, mGluR6, which controls the activity of a depolarizing current. Despite intensive research over the past two decades, the molecular identity of the channel that generates this depolarizing current has remained elusive. Here, we present evidence indicating that TRPM1 is necessary for the depolarizing light response of ON-bipolar cells, and further that TRPM1 is a component of the channel that generates this light response. Gene expression profiling revealed that TRPM1 is highly enriched in ON-bipolar cells. In situ hybridization experiments confirmed that TRPM1 mRNA is found in cells of the retinal inner nuclear layer, and immunofluorescent confocal microscopy showed that TRPM1 is localized in the dendrites of ON-bipolar cells in both mouse and macaque retina. The electroretinogram (ERG) of TRPM1-deficient (TRPM1−/−) mice had a normal a-wave, but no b-wave, indicating a loss of bipolar cell response. Finally, whole-cell patch-clamp recording from ON-bipolar cells in mouse retinal slices demonstrated that genetic deletion of TRPM1 abolished chemically simulated light responses from rod bipolar cells and dramatically altered the responses of cone ON-bipolar cells. Identification of TRPM1 as a mGluR6-coupled cation channel reveals a key step in vision, expands the role of the TRP channel family in sensory perception, and presents insights into the evolution of vertebrate vision.


Investigative Ophthalmology & Visual Science | 2010

RGS7 and -11 complexes accelerate the ON-bipolar cell light response.

Jianmei Zhang; Brett G. Jeffrey; Catherine W. Morgans; Neal S. Burke; Tammie L. Haley; Robert M. Duvoisin; R. Lane Brown

PURPOSE The retinal ON-bipolar cell (ON-BPC) light response is initiated upon deactivation of the metabotropic glutamate receptor mGluR6 and the G protein Go. G protein-based signaling cascades are typically accelerated by interaction of the G protein alpha subunit with a member of the regulator of G protein signaling (RGS) protein family. The goal of this study was to determine whether RGS7 and/or -11 serve this function in retinal ON-BPCs. METHODS Retinas from mice lacking RGS11 (RGS11(-/-)), or with a deletion mutation in RGS7 (RGS7(Delta/Delta)), or both, were compared to wild-type (WT) by immunofluorescence confocal microscopy. The retinal light response was measured with the electroretinogram (ERG). The kinetics of simulated light responses from individual rod bipolar cells were recorded by whole-cell patch-clamp electrophysiology. RESULTS Levels of the R7 RGS interaction partners, Gbeta5 and R9AP, were reduced in the outer plexiform layer of the RGS11(-/-) and RGS7(Delta/Delta)/RGS11(-/-) mice. ERG recordings demonstrated a delay in the rising phase of the ERG b-wave, larger photopic b-wave amplitudes, and increased scotopic threshold response sensitivity in the RGS11(-/-) and RGS7(Delta/Delta)/RGS11(-/-) mice. The ERG measured from the RGS7(Delta/Delta) retina was normal. Patch-clamp recordings of chemically simulated light responses of rod BPCs revealed a 25-ms delay in the onset of the ON-BPC response in the RGS7(Delta/Delta)/RGS11(-/-) mouse compared with the WT. CONCLUSIONS RGS11 plays a role in the deactivation of Galphao, which precedes activation of the depolarizing current in ON-BPCs. RGS7 must also serve a role as changes in RGS7(Delta/Delta)/RGS11(-/-) mice were greater than those in RGS11(-/-) mice.


Journal of Bacteriology | 2002

TonB Interacts with Nonreceptor Proteins in the Outer Membrane of Escherichia coli

Penelope I. Higgs; Tracy E. Letain; Kelley K. Merriam; Neal S. Burke; HaJeung Park; ChulHee Kang; Kathleen Postle

The Escherichia coli TonB protein serves to couple the cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes and vitamin B(12) across the outer membrane. Consistent with this role, TonB has been demonstrated to participate in strong interactions with both the cytoplasmic and outer membranes. The cytoplasmic membrane determinants for that interaction have been previously characterized in some detail. Here we begin to examine the nature of TonB interactions with the outer membrane. Although the presence of the siderophore enterochelin (also known as enterobactin) greatly enhanced detectable cross-linking between TonB and the outer membrane receptor, FepA, the absence of enterochelin did not prevent the localization of TonB to the outer membrane. Furthermore, the absence of FepA or indeed of all the iron-responsive outer membrane receptors did not alter this association of TonB with the outer membrane. This suggested that TonB interactions with the outer membrane were not limited to the TonB-dependent outer membrane receptors. Hydrolysis of the murein layer with lysozyme did not alter the distribution of TonB, suggesting that peptidoglycan was not responsible for the outer membrane association of TonB. Conversely, the interaction of TonB with the outer membrane was disrupted by the addition of 4 M NaCl, suggesting that these interactions were proteinaceous. Subsequently, two additional contacts of TonB with the outer membrane proteins Lpp and, putatively, OmpA were identified by in vivo cross-linking. These contacts corresponded to the 43-kDa and part of the 77-kDa TonB-specific complexes described previously. Surprisingly, mutations in these proteins individually did not appear to affect TonB phenotypes. These results suggest that there may be multiple redundant sites where TonB can interact with the outer membrane prior to transducing energy to the outer membrane receptors.


Visual Neuroscience | 2010

R9AP stabilizes RGS11-G beta5 and accelerates the early light response of ON-bipolar cells.

Brett G. Jeffrey; Catherine W. Morgans; Theresa Puthussery; Theodore G. Wensel; Neal S. Burke; R. Lane Brown; Robert M. Duvoisin

The rate-limiting step in the recovery of the photoreceptor light response is the hydrolysis of GTP by transducin, a reaction that is accelerated by the RGS9-Gbeta5 complex, and its membrane anchor, R9AP. Similar complexes, including RGS7, RGS11, and Gbeta5, are found in retinal ON-bipolar cell dendrites. Here, we present evidence that R9AP is also expressed in the dendritic tips of ON-bipolar cells. Immunofluorescent staining for R9AP revealed a punctate pattern of labeling in the outer plexiform layer, where it colocalized with mGluR6. In photoreceptors, R9AP is required for proteolytic stability of the entire regulator of G protein signaling complex, and we found that genetic deletion of R9AP also results in a marked reduction in the levels of RGS11 and Gbeta5 in the bipolar cell dendrites; the level of RGS7 was unaffected, suggesting the presence of another interaction partner to stabilize RGS7. To determine the effect of R9AP deletion on the response kinetics of ON-bipolar cells, we compared the electroretinogram (ERG) between wild-type and R9AP-deficient mice. The ERG b-wave, reflecting ON-bipolar cell activity, was delayed and larger in the R9AP-deficient mice. Our data indicate that R9AP is required for stable expression of RGS11-Gbeta5 in ON-bipolar cell dendrites. Furthermore, they suggest that the RGS11-Gbeta5-R9AP complex accelerates the initial ON-bipolar cell response to light.


Investigative Ophthalmology & Visual Science | 2015

Voriconazole, an Antifungal Triazol That Causes Visual Side Effects, Is an Inhibitor of TRPM1 and TRPM3 Channels

Wei Hong Xiong; R. Lane Brown; Brian T. Reed; Neal S. Burke; Robert M. Duvoisin; Catherine W. Morgans

PURPOSE Administration of voriconazole, an antifungal triazole, causes transient visual disturbances in patients and attenuates the b-wave of the ERG. We sought to identify the retinal target of voriconazole underlying the effect on the ERG b-wave. METHODS Electroretinograms were recorded from mice before and after intraperitoneal injection of voriconazole. The effect of voriconazole on ON-bipolar cells was tested by patch-clamp recordings of ON-bipolar cells in mouse retinal slices. Effects of voriconazole on mGluR6 and TRPM3 were assessed by patch-clamp recordings of Chinese hamster ovary (CHO) and HEK293 cells transfected with either TRPM3 or mGluR6 plus Kir3.1/Kir3.4. RESULTS Voriconazole attenuated the ERG b-wave in mice, and inhibited ON-bipolar cell responses evoked by application of CPPG, an mGluR6 antagonist, onto the ON-bipolar cell dendrites, indicating that voriconazole blocks a step in the mGluR6-TRPM1 signal transduction pathway. Voriconazole almost completely blocked capsaicin-activated currents in ON-bipolar cells, which have been attributed to direct activation of the TRPM1 cation channel. Furthermore, application of voriconazole to CHO cells expressing TRPM3, a closely related channel to TRPM1, showed that voriconazole reversibly blocked pregnenolone sulfate-stimulated TRPM3 currents in transfected cells. In contrast, voriconazole only slightly inhibited mGluR6-mediated activation of G-protein activated inward rectifier potassium (GIRK) currents in cotransfected cells, suggesting that mGluR6 is not the primary target of voriconazole in ON-bipolar cells. CONCLUSIONS The visual disturbances associated with voriconazole are likely due to block of TRPM1 channels in retinal ON-bipolar cells. Other neurological effects of voriconazole may be due to block of TRPM3 channels expressed in the brain.


BMC Microbiology | 2010

Effects of site-directed mutagenesis of mglA on motility and swarming of Myxococcus xanthus

Sarah Fremgen; Neal S. Burke; Patricia L. Hartzell

BackgroundThe mglA gene from the bacterium Myxococcus xanthus encodes a 22kDa protein related to the Ras superfamily of monomeric GTPases. MglA is required for the normal function of A-motility (a dventurous), S-motility (s ocial), fruiting body morphogenesis, and sporulation. MglA and its homologs differ from all eukaryotic and other prokaryotic GTPases because they have a threonine (Thr78) in place of the highly conserved aspartate residue of the consensus PM3 (p hosphate-m agnesium binding) region. To identify residues critical for MglA function or potential protein interactions, and explore the function of Thr78, the phenotypes of 18 mglA mutants were characterized.ResultsNine mutants, with mutations predicted to alter residues that bind the guanine base or coordinate magnesium, did not produce detectable MglA. As expected, these mutants were mot- dev- because MglA is essential for these processes. Of the remaining nine mutants, seven showed a wild-type distribution pattern for MglA but fell into two categories with regard to function. Five of the seven mutants exhibited mild phenotypes, but two mutants, T78D and P80A, abolished motility and development. The localization pattern of MglA was abolished in two mutants that were mot- spo- and dev-. These two mutants were predicted to alter surface residues at Asp52 and Thr54, which suggests that these residues are critical for proper localization and may define a protein interaction site. Improving the consensus match with Ras at Thr78 abolished function of MglA. Only the conservative serine substitution was tolerated at this position. Merodiploid constructs revealed that a subset of alleles, including mglA D52A, were dominant and also illustrated that changing the balance of MglA and its co-transcribed partner, MglB, affects A-motility.ConclusionOur results suggest that GTP binding is critical for stability of MglA because MglA does not accumulate in mutants that cannot bind GTP. The threonine in PM3 of MglA proteins represents a novel modification of the highly conserved GTPase consensus at this position. The requirement for a hydroxyl group at this position may indicate that MglA is subject to modification under certain conditions. Proper localization of MglA is critical for both motility and development and likely involves protein interactions mediated by residues Asp52 and Thr54.


Veterinary and Comparative Oncology | 2017

Comparison of chemotherapeutic drug resistance in cells transfected with canine ABCG2 or feline ABCG2.

R. S. Lewis; J. Fidel; S. Dassanayake; Michael H. Court; Neal S. Burke; Katrina L. Mealey

ABCG2 (ATP binding cassette subfamily G, member 2) mediates resistance to a variety of cytotoxic agents. Although human ABCG2 is well characterized, the function of canine ABCG2 has not been studied previously. Feline ABCG2 has an amino acid substitution in the adenosine triphosphate-binding domain that decreases its transport capacity relative to human ABCG2. Our goal was to compare canine ABCG2-mediated chemotherapeutic drug resistance to feline ABCG2-mediated chemotherapeutic drug resistance. HEK-293 cells stably transfected with plasmid containing canine ABCG2, feline ABCG2 or no ABCG2 were exposed to carboplatin, doxorubicin, mitoxantrone, toceranib or vincristine, and cell survival was subsequently determined. Canine ABCG2 conferred a greater degree of chemotherapy resistance than feline ABCG2 for mitoxantrone. Neither canine nor feline ABCG2 conferred resistance to doxorubicin, vincristine or toceranib. Canine, but not feline, ABCG2 conferred resistance to carboplatin, a drug that is not reported to be a substrate for ABCG2 in other species.


Journal of Veterinary Pharmacology and Therapeutics | 2017

Establishment of a cell line for assessing drugs as canine P-glycoprotein substrates: proof of principle

Katrina L. Mealey; S. Dassanayake; Neal S. Burke

P-glycoprotein (P-gp), encoded by the ABCB1 (MDR1) gene, dramatically impacts drug disposition. P-gp is expressed in the intestines, biliary canaliculi, renal tubules, and brain capillaries where it functions to efflux substrate drugs. In this capacity, P-gp restricts oral absorption, enhances biliary and renal excretion, and inhibits central nervous system entry of substrate drugs. Many drugs commonly used in veterinary medicine are known substrates for canine P-gp (vincristine, loperamide, ivermectin, others). Because these drugs have a narrow therapeutic index, defective P-gp function can cause serious adverse drug reactions due to enhanced brain penetration and/or decreased clearance. P-gp dysfunction in dogs can be intrinsic (dogs harboring ABCB1-1Δ) or acquired (drug interactions between a P-gp inhibitor and P-gp substrate). New human drug candidates are required to undergo assessment for P-gp interactions according to FDA and EMA regulations to avoid adverse drug reactions and drug-drug interactions. Similar information regarding canine P-gp could prevent adverse drug reactions in dogs. Because differences in P-gp substrates have been documented between species, one should not presume that human or murine P-gp substrates are necessarily canine P-gp substrates. Thus, our goal was to develop a cell line for assessing drugs as canine P-gp substrates.


Oncology | 2014

Tyrosine kinase inhibitors enhance ciprofloxacin-induced phototoxicity by inhibiting ABCG2.

Katrina L. Mealey; Sandamali Dassanayake; Neal S. Burke

The tyrosine kinase inhibitor (TKI) class of anticancer agents inhibits ABCG2-mediated drug efflux. ABCG2 is an important component of the blood-retinal barrier, where it limits retinal exposure to phototoxic compounds such as fluoroquinolone antibiotics. Patients treated with TKIs would be expected to be at greater risk for retinal phototoxicity. Using an in vitro system, our results indicate that the TKIs gefitinib and imatinib abrogate the ability of ABCG2 to protect cells against ciprofloxacin-induced phototoxicity. We conclude that the concurrent administration of ABCG2 inhibitors with photoreactive fluoroquinolone antibiotics may result in retinal damage.


Oncology | 2014

Contents Vol. 87, 2014

James Ahlgren; Nihar Patel; Samuel J. Simmens; Esma Akin; Catherine Bishop; Dean Kirkel; Paula Siegel; Suzanne Schuck; Hiwot Guebre-Xabiher; Robert S. Siegel; Naoyuki Hanari; Hisahiro Matsubara; Yuka Isozaki; Isamu Hoshino; Yasunori Akutsu; Mikito Mori; Takanori Nishimori; Kentaro Murakami; Naoki Akanuma; Takeshi Toyozumi; Masahiko Takahashi; Hiroshi Suito; Nobuyoshi Takeshita; Tetsuro Maruyama; Akane Suzuki; Toshinori Nakayama; Cora N. Sternberg; Ian D. Davis; Keith C. Deen; Entisar Sigal

A.B. Benson, Chicago, Ill. A. Chang, Singapore A.L. Cheng, Taipei J.F. Cleary, Madison, Wisc. M. Dietel, Berlin M.S. Ernstoff, Cleveland, Ohio M.G. Fakih, Duarte, Calif. J.J. Grau, Barcelona H. Gronemeyer, Illkirch D.F. Hayes, Ann Arbor, Mich. C.S. Johnson, Buffalo, N.Y. M.J. Kelley, Durham, N.C. L. Kumar, New Delhi P.J. Loehrer, Indianapolis, Ind. J.R. Marshall, Buffalo, N.Y. S. Monfardini, Milan R. Nagler, Haifa R. Ohno, Nagoya B. Pestalozzi, Zurich H.M. Pinedo, Amsterdam E.A. Repasky, Buffalo, N.Y. A. Semczuk, Lublin E.F. Smit, Amsterdam C.N. Sternberg, Rome R. Stupp, Zurich M.S. Tallman, Chicago, Ill. S. Tanaka, Hiroshima M. Tian, Houston, Tex. D.L. Trump, Buffalo, N.Y. T. Wiegel, Ulm W. Yasui, Hiroshima H. Zhang, Hangzhou City Editor-in-Chief

Collaboration


Dive into the Neal S. Burke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrina L. Mealey

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Lane Brown

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Brett G. Jeffrey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael H. Court

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Jianmei Zhang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

S. Dassanayake

Washington State University

View shared research outputs
Top Co-Authors

Avatar

A. Costa

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge