Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neal T. Dittmer is active.

Publication


Featured researches published by Neal T. Dittmer.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant

Navdeep S. Mutti; Joe Louis; Loretta K. Pappan; Kirk L. Pappan; Khurshida Begum; Ming-Shun Chen; Yoonseong Park; Neal T. Dittmer; Jeremy L. Marshall; John C. Reese; Gerald R. Reeck

In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid–plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Here, we focus on a salivary protein we have arbitrarily designated Protein C002. We have shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant. Here, we further characterize the protein, its transcript, and its gene, and we study the feeding process of knockdown aphids. The encoded protein fails to match any protein outside of the family Aphididae. By using in situ hybridization and immunohistochemistry, the transcript and the protein were localized to a subset of secretory cells in principal salivary glands. Protein C002, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding. By using the electrical penetration graph method on c002-knockdown aphids, we find that the knockdown affects several aspects of foraging and feeding, with the result that the c002-knockdown aphids spend very little time in contact with phloem sap in sieve elements. Thus, we infer that Protein C002 is crucial in the feeding of the pea aphid on fava bean.


Insect Biochemistry and Molecular Biology | 2002

Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity

Alexander S. Raikhel; Vladimir Kokoza; Jinsong Zhu; David Martín; Sheng-Fu Wang; Chao Li; Guoqiang Sun; Abdoulaziz Ahmed; Neal T. Dittmer; Geoff Attardo

Elucidation of molecular mechanisms underlying stage- and tissue-specific expression of genes activated by a blood meal is of great importance for current efforts directed towards utilizing molecular genetics to develop novel strategies of mosquito and pathogen control. Regulatory regions of such genes can be used to express anti-pathogen effector molecules in engineered vectors in a precise temporal and spatial manner, designed to maximally affect a pathogen. The fat body is a particularly important target for engineering anti-pathogen properties because in insects, it is a potent secretory tissue releasing its products to the hemolymph, an environment or a crossroad for most pathogens. Recently, we have provided proof of this concept by engineering stable transformant lines of Aedes aegypti mosquito, in which the regulatory region A. aegypti vitellogenin (Vg) gene activates high-level fat body-specific expression of a potent anti-bacterial factor, defensin, in response to a blood meal. Further study of the Vg gene utilizing Drosophila and Aedes transformation identified cis-regulatory sites responsible for state- and fat body-specific activation of this gene via a blood-meal-triggered cascade. These analyses revealed three regulatory regions in the 2.1-kb upstream portion of the Vg gene. The proximal region, containing binding sites to EcR/USP, GATA, C/EBP and HNF3/fkh, is required for the correct tissue- and stage-specific expression at a low level. The median region, carrying sites for early ecdysone response factors E74 and E75, is responsible for a stage-specific hormonal enhancement of the Vg expression. Finally, the distal GATA-rich region is necessary for extremely high expression levels characteristic to the Vg gene. Furthermore, our study showed that several transcription factors involved in controlling the Vg gene expression, are themselves targets of the blood meal-mediated regulatory cascade, thus greatly amplifying the effect of this cascade on the Vg gene. This research serves as the foundation for the future design of mosquito-specific expression cassettes with predicted stage- and tissue specificity at the desired levels of transgene expression.


Journal of Proteome Research | 2011

Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach.

James C. Carolan; Doina Caragea; Karen T. Reardon; Navdeep S. Mutti; Neal T. Dittmer; Kirk L. Pappan; Feng Cui; Marisol Castaneto; Julie Poulain; Carole Dossat; Denis Tagu; John C. Reese; Gerald R. Reeck; T. L. Wilkinson; Owain R. Edwards

The relationship between aphids and their host plants is thought to be functionally analogous to plant-pathogen interactions. Although virulence effector proteins that mediate plant defenses are well-characterized for pathogens such as bacteria, oomycetes, and nematodes, equivalent molecules in aphids and other phloem-feeders are poorly understood. A dual transcriptomic-proteomic approach was adopted to generate a catalog of candidate effector proteins from the salivary glands of the pea aphid, Acyrthosiphon pisum. Of the 1557 transcript supported and 925 mass spectrometry identified proteins, over 300 proteins were identified with secretion signals, including proteins that had previously been identified directly from the secreted saliva. Almost half of the identified proteins have no homologue outside aphids and are of unknown function. Many of the genes encoding the putative effector proteins appear to be evolving at a faster rate than homologues in other insects, and there is strong evidence that genes with multiple copies in the genome are under positive selection. Many of the candidate aphid effector proteins were previously characterized in typical phytopathogenic organisms (e.g., nematodes and fungi) and our results highlight remarkable similarities in the saliva from plant-feeding nematodes and aphids that may indicate the evolution of common solutions to the plant-parasitic lifestyle.


Insect Biochemistry and Molecular Biology | 2010

Insect multicopper oxidases: diversity, properties, and physiological roles.

Neal T. Dittmer; Michael R. Kanost

Multicopper oxidases (MCOs) are a group of related proteins that are ubiquitous in nature. They perform a wide variety of functions including pigmentation, lignin synthesis and degradation, iron homeostasis, and morphogenesis. The laccases of fungi are intensely studied for their biotechnological potential as a more environmentally friendly alternative to harsh or toxic chemicals used for certain industrial applications. Research into insect MCOs has recently attracted renewed interest as it is evident that they have diverse roles in insect physiology. MCO mRNA or enzymatic activity has been detected in extracts from epidermis, midgut, Malpighian tubules, salivary glands, and reproductive tissues. Genome sequencing has allowed for the identification of MCO genes and revealed that the number of genes can vary between species. The function of one of the genes, MCO2, has been demonstrated to be a laccase-type phenoloxidase critical for cuticle sclerotization. However, the enzymatic properties and physiological functions of the remaining MCOs remain to be elucidated. A better understanding of the roles MCOs play in insect biology may help to develop new control measures of pest species.


Insect Biochemistry and Molecular Biology | 2000

Lipophorin as a yolk protein precursor in the mosquito, Aedes aegypti

Jianxin Sun; Tsuyoshi Hiraoka; Neal T. Dittmer; Kook-Ho Cho; Alexander S. Raikhel

We examined expression of the lipophorin (Lp) gene, lipophorin (Lp) synthesis and secretion in the mosquito fat body, as well as dynamic changes in levels of this lipoprotein in the hemolymph and ovaries, during the first vitellogenic cycle of females of the yellow fever mosquito, Aedes aegypti. Lipophorin was purified by potassium bromide (KBr) density gradient ultracentrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Polyclonal antibodies were produced against individual Lp apoproteins, apolipoprotein-I (apoLp-I) and apolipoprotein-II (apoLp-II), with molecular weights of 240 and 75 kDa, respectively. We report here that in the mosquito A. aegypti, Lp was synthesized by the fat body, with a low level of the Lp gene expression and protein synthesis being maintained in pre- and postvitellogenic females. Following a blood meal, the Lp gene expression and protein synthesis were significantly upregulated. Our findings showed that the fat body levels of Lp mRNA and the rate of Lp secretion by this tissue reached their maximum at 18 h post-blood meal (PMB). 20-Hydroxyecdysone was responsible for an increase in the Lp gene expression and Lp protein synthesis in the mosquito fat body. Finally, the immunocytochemical localization of Lp showed that in vitellogenic female mosquitoes, this protein was accumulated by developing oocytes where it was deposited in yolk granules.


Insect Biochemistry and Molecular Biology | 2002

Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta

Yu-Cheng Zhu; Charles A. Specht; Neal T. Dittmer; Subbaratnam Muthukrishnan; Michael R. Kanost; Karl J. Kramer

Glycosyltransferases are enzymes that synthesize oligosaccharides, polysaccharides and glycoconjugates. One type of glycosyltransferase is chitin synthase, a very important enzyme in biology, which is utilized by insects, fungi, and other invertebrates to produce chitin, a polysaccharide of beta-1,4-linked N-acetylglucosamine. Chitin is an important component of the insects exoskeletal cuticle and gut lining. To identify and characterize a chitin synthase gene of the tobacco hornworm, Manduca sexta, degenerate primers were designed from two highly conserved regions in fungal and nematode chitin synthase protein sequences and then used to amplify a similar region from Manduca cDNA. A full-length cDNA of 5152 nucleotides was assembled for the putative Manduca chitin synthase gene, MsCHS1, and sequencing of genomic DNA verified the contiguity of the sequence. The MsCHS1 cDNA has an ORF of 4692 nucleotides that encodes a transmembrane protein of 1564 amino acid residues with a mass of approximately 179 kDa (GenBank no. AY062175). It is most similar, over its entire length of protein sequence, to putative chitin synthases from other insects and nematodes, with 68% identity to enzymes from both the blow fly, Lucilia cuprina, and the fruit fly, Drosophila melanogaster. The similarity with fungal chitin synthases is restricted to the putative catalytic domain, and the MsCHS1 protein has, at equivalent positions, several amino acids that are essential for activity as revealed by mutagenesis of the fungal enzymes. A 5.3-kb transcript of MsCHS1 was identified by northern blot hybridization of RNA from larval epidermis, suggesting that the enzyme functions to make chitin deposited in the cuticle. Further examination by RT-PCR showed that MsCHS1 expression is regulated in the epidermis, with the amount of transcript increasing during phases of cuticle deposition.


Journal of Proteome Research | 2012

Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum.

Neal T. Dittmer; Yasuaki Hiromasa; John M. Tomich; Nanyan Lu; Richard W. Beeman; Karl J. Kramer; Michael R. Kanost

The insect cuticle is a composite biomaterial made up primarily of chitin and proteins. The physical properties of the cuticle can vary greatly from hard and rigid to soft and flexible. Understanding how different cuticle types are assembled can aid in the development of novel biomimetic materials for use in medicine and technology. Toward this goal, we have taken a combined proteomics and transcriptomics approach with the red flour beetle, Tribolium castaneum, to examine the protein and gene expression profiles of the elytra and hindwings, appendages that contain rigid and soft cuticles, respectively. Two-dimensional gel electrophoresis analysis revealed distinct differences in the protein profiles between elytra and hindwings, with four highly abundant proteins dominating the elytral cuticle extract. MALDI/TOF mass spectrometry identified 19 proteins homologous to known or hypothesized cuticular proteins (CPs), including a novel low complexity protein enriched in charged residues. Microarray analysis identified 372 genes with a 10-fold or greater difference in transcript levels between elytra and hindwings. CP genes with higher expression in the elytra belonged to the Rebers and Riddiford family (CPR) type 2, or cuticular proteins of low complexity (CPLC) enriched in glycine or proline. In contrast, a majority of the CP genes with higher expression in hindwings were classified as CPR type 1, cuticular proteins analogous to peritrophins (CPAP), or members of the Tweedle family. This research shows that the elyra and hindwings, representatives of rigid and soft cuticles, have different protein and gene expression profiles for structural proteins that may influence the mechanical properties of these cuticles.


Insect Biochemistry and Molecular Biology | 2008

Characterization of the multicopper oxidase gene family in Anopheles gambiae

Maureen J. Gorman; Neal T. Dittmer; Jeremy L. Marshall; Michael R. Kanost

The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including diphenols, and several oxidases with specific substrates such as iron, copper or ascorbic acid. We have identified five putative MCO genes in the genome of Anopheles gambiae and have cloned cDNAs encompassing the full coding region for each gene. MCO1 mRNA was detected in all developmental stages and in all of the larval and adult tissues tested. We observed an increase in MCO1 transcript abundance in the midguts and Malphighian tubules of adult females following a blood meal and in adult abdominal carcasses in response to an immune challenge. Two alternatively spliced isoforms of MCO2 mRNA were identified. The A isoform of MCO2 was previously detected in larval and pupal cuticle where it probably catalyzes sclerotization reactions (He, N., Botelho, J.M.C., McNall, R.J., Belozerov, V., Dunn, W.A., Mize, T., Orlando, R., Willis, J.H., 2007. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37, 135-146). The B isoform was transcriptionally upregulated in ovaries in response to a blood meal. MCO3 mRNA was detected in the adult midgut, Malpighian tubules, and male reproductive tissues; like MCO1, it was upregulated in response to an immune challenge or a blood meal. MCO4 and MCO5 were observed primarily in eggs and in the abdominal carcass of larvae. A phylogenetic analysis of insect MCO genes identified putative orthologs of MCO1 and MCO2 in all of the insect genomes tested, whereas MCO3, MCO4 and MCO5 were found only in the two mosquito species analyzed. MCO2 orthologs have especially high sequence similarity, suggesting that they are under strong purifying selection; the A isoforms are more conserved than the B isoforms. The mosquito specific group shares a common ancestor with MCO2. This initial study of mosquito MCOs suggests that MCO2 may be required for egg development or eggshell tanning in addition to cuticle tanning, while MCO1 and MCO3 may be involved in metal metabolism or immunity.


Insect Biochemistry and Molecular Biology | 2010

Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum

Yasuyuki Arakane; Neal T. Dittmer; Yoshinori Tomoyasu; Karl J. Kramer; Subbaratnam Muthukrishnan; Richard W. Beeman; Michael R. Kanost

Querying the genome of the red flour beetle, Tribolium castaneum, with the Drosophila melanogaster Yellow-y (DmY-y) protein sequence identified 14 Yellow homologs. One of these is an ortholog of DmY-y, which is required for cuticle pigmentation (melanization), and another is an ortholog of DmY-f/f2, which functions as a dopachrome conversion enzyme (DCE). Phylogenetic analysis identified putative T. castaneum orthologs for eight of the D. melanogaster yellow genes, including DmY-b, -c, -e, -f, -g, -g2, -h and -y. However, one clade of five beetle genes, TcY-1-5, has no orthologs in D. melanogaster. Expression profiles of all T. castaneum yellow genes were determined by RT-PCR of pharate pupal to young adult stages. TcY-b and TcY-c were expressed throughout all developmental stages analyzed, whereas each of the remaining yellow genes had a unique expression pattern, suggestive of distinct physiological functions. TcY-b, -c and -e were all identified by mass spectrometry of elytral proteins from young adults. Eight of the 14 genes showed differential expression between elytra and hindwings during the last three days of the pupal stage when the adult cuticle is synthesized. Double-stranded RNA (dsRNA)-mediated transcript knockdown revealed that TcY-y is required for melanin production in the hindwings, particularly in the region of the pterostigma, while TcY-f appears to be required for adult cuticle sclerotization but not pigmentation.


Insect Biochemistry and Molecular Biology | 2015

Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects

Guillaume Tetreau; Neal T. Dittmer; Xiaolong Cao; Sinu Agrawal; Yun-Ru Chen; Subbaratnam Muthukrishnan; Jiang Haobo; Gary W. Blissard; Michael R. Kanost; Ping Wang

In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects.

Collaboration


Dive into the Neal T. Dittmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Cheng Zhu

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Charles A. Specht

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge