Nebojsa Jasnic
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nebojsa Jasnic.
PLOS ONE | 2013
Predrag Vujovic; Stefan Stamenkovic; Nebojsa Jasnic; Iva Lakic; S. Djurasevic; Gordana Cvijic; Jelena Djordjevic
Fat mass and obesity associated protein (Fto) is a nucleic acid demethylase, with a preference for thymine or uracil, according to the recent structural data. This fact suggests that methylated single-stranded RNA, rather than DNA, may be the primary Fto substrate. Fto is abundantly expressed in all hypothalamic sites governing feeding behavior. Considering that selective modulation of Fto levels in the hypothalamus can influence food intake, we set out to investigate the effect of 48 h fasting on the Fto expression in lateral hypothalamic area, paraventricular, ventromedial and arcuate nucleus, the regulatory centres of energy homeostasis. We have demonstrated that 48 h fasting causes not only an increase in the overall hypothalamic levels of both Fto mRNA and protein, but also alters Fto intracellular distribution. This switch happens in some neurons of paraventricular and ventromedial nucleus, as well as lateral hypothalamic area, resulting in the majority of the enzyme being localized outside the cell nuclei. Interestingly, the change in the Fto intracellular localization was not observed in neurons of arcuate nucleus, suggesting that fasting did not universally affect Fto in all of the hypothalmic sites involved in energy homeostasis regulation. Both Fto mRNA and catechol-O-methyltransferaze mRNA were upregulated in the identical time-dependent manner in fasting animals. This fact, combined with the knowledge of the Fto substrate preference, may provide further insight into monoamine metabolism in the state of disturbed energy homeostasis.
The Journal of Experimental Biology | 2013
Nebojsa Jasnic; Jelena Djordjevic; Predrag Vujovic; Iva Lakic; S. Djurasevic; Gordana Cvijic
SUMMARY Thermal stressors such as low and high ambient temperature elicit an abundance of neuroendocrine responses including activation of the hypothalamo-pituitary–adrenal (HPA) axis and arginine vasopressin (AVP) release. The exposure to heat is a particularly interesting model for studying AVP action because this kind of stressor represents not only an unpleasant experience but also a threat to osmotic homeostasis. As AVP has long been recognized as a hormone involved in the modulation of HPA axis activity, the aim of this study was to elucidate the role of AVP in acutely heat-exposed rats using Nelivaptan, a selective vasopressin 1b receptor (V1bR) antagonist. Rats were exposed to high ambient temperature (38°C) for 60 min. The circulating hormones were determined by ELISA or chemiluminescence, and intrapituitary adrenocorticotropic hormone (ACTH) and V1bR level were determined by western blot. The results obtained show that V1bR blockade negatively affected the increase in blood ACTH caused by heat exposure. This treatment alone, or in combination with Nelivaptan, decreased intrapituitary V1bR levels while circulating AVP concentration was increased under the same conditions. Furthermore, a strong correlation was observed between blood ACTH and corticosterone concentration. In conclusion, our results directly confirm the positive role of AVP in the regulation of ACTH secretion from the pituitary in animals exposed to heat. Moreover, the results suggest that AVP from the general circulation influences pituitary V1bR.
Folia Histochemica Et Cytobiologica | 2011
Nebojsa Jasnic; Aleksandra Korac; Ksenija Velickovic; Igor Golic; Jelena Djordjevic; S. Djurasevic; Iva Djordjevic; Predrag Vujovic; Gordana Cvijic
The increased ambient temperature affects the function of hypothalamic-pituitary-adrenal (HPA) axis. Since the correlation among vasopressin (VP), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) responses to various stressors have been long recognized, the aim of this study was to reveal the aforementioned hormones production and morphology of the pituitary gland after exposure to acute heat. Rats were exposed to high ambient temperature (38 °C) for 20 or 60 minutes. The circulating hormones were determined by an ELISA test or chemiluminescences method. The results obtained show the elevation in ACTH and CORT secretion depending on the duration of heat exposure. The VP concentration increased only after prolonged exposure to heat (60 min). The pituitary morphology was examined by routine and fluorescent immunohistochemistry as well as electron microscopy. Observed changes in the anterior and posterior pituitary well corresponded to circulating hormones, regarding the volume density of ACTH-immunopositive cells, percentage of ACTH immunopositive area v. total area and number of VP-immunopositive containing varicose fibers per total area. Acute heat exposure also induced changes in shapes of ACTH-immunopositive cells. Cells appeared stellate with numerous slender cytoplasmic processes and degranulated, which is the most obvious after 20 min. In addition, immunopositivity of endothelial and anterior pituitary cells for VP suggests its influence on ACTH secretion.
European Neuropsychopharmacology | 2016
Bojana Stefanovic; Natasa Spasojevic; Predrag Jovanovic; Nebojsa Jasnic; Jelena Djordjevic; Sladjana Dronjak
The hippocampus is sensitive to stress which activates norepinephrine terminals deriving from the locus coeruleus. Melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behaviour. Thus, in the present study, an examination was made of the effect of chronic melatonin treatment on norepinephrine content, synthesis, uptake, vesicular transport and degradation in the hippocampus of rats exposed to CUMS. This entailed quantifying the norephinephrine, mRNA and protein levels of DBH, NET, VMAT 2, MAO-A and COMT. The results show that CUMS evoked prolonged immobility. Melatonin treatment decreased immobility in comparison with the placebo group, reflecting an antidepressant-like effect. Compared with the placebo group, a dramatic decrease in norepinephrine content, decreased VMAT2 mRNA and protein and increased MAO-A protein levels in the hippocampus of the CUMS rats were observed. However, no significant differences in the levels of DBH, NET, COMT mRNA and protein and MAO-A mRNA levels between the placebo and the stressed groups were found. The results showed the restorative effects of melatonin on the stress-induced decline in the norepinephrine content of the hippocampus. It was observed that melatonin treatment in the CUMS rats prevented the stress-induced decrease in VMAT2 mRNA and protein levels, whereas it reduced the increase of the mRNA of COMT and protein levels of MAO-A. Chronic treatment with melatonin failed to alter the gene expression of DBH or NET in the hippocampus of the CUMS rats. Additionally, the results show that melatonin enhances VMAT2 expression and norepinephrine storage, whilst it reduces norepinephrine degrading enzymes.
Peptides | 2014
Predrag Jovanovic; Natasa Spasojevic; B. Stefanovic; N. Bozovic; Nebojsa Jasnic; Jelena Djordjevic; Sladjana Dronjak
The neuropeptide oxytocin has been shown to influence on neuroendocrine function. The aim of the present study was to investigate the effect of peripheral oxytocin treatment on the synthesis, uptake and content of adreno-medullary catecholamine. For this purpose oxytocin (3.6μg/100g body weight, s.c) was administrated to male rats once a day over 14 days. In order to assess the effect of peripheral oxytocin treatment on adreno-medullary catecholamine we measured epinephrine and norepinephrine content and gene expression of tyrosine hydroxylase (TH), norepinephrine transporter (NET) and vesicular monoamine transporter 2 (VMAT2) in the adrenal medulla. Our results show a significant increase of epinephrine (1.7-fold, p<0.05) and norepinephrine (1.5-fold, p<0.05) content in oxytocin treated animals compared to saline treated ones. Oxytocin treatment had no effect either on mRNA or protein level of TH and NET. Under oxytocin treatment the increase in VMAT2 mRNA level was not statistically significant, but it caused a significant increase in protein level of VMAT2 (3.7-fold, p<0.001). These findings indicate that oxytocin treatment increases catecholamine content in the rat adrenal medulla modulating VMAT2 expression.
Journal of Medicinal Food | 2017
S. Djurasevic; Adel Jama; Nebojsa Jasnic; Predrag Vujovic; Milos Jovanovic; Dragana Mitić-Ćulafić; Jelena Knezevic-Vukcevic; Maja Cakic-Milosevic; Konstantin Ilijevic; Jelena Djordjevic
One of the useful properties of probiotic bacteria is their capacity to bind different targets, thus eliminating them through feces. It is supposed that one of these targets could be cadmium, a widespread environmental toxicant that causes various disturbances in biological systems. This study examined the protective effects of probiotic supplementation against cadmium-induced toxicity in the rat. The experiment was conducted in the course of 5 weeks. Animals were divided into four groups: (1) controls, (2) probiotics treated, (3) cadmium treated, and (4) probiotics + cadmium treated. The cadmium concentration was measured in the blood, liver, kidney, and feces, as well as the blood alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as biomarkers of the liver function. Histomorphological changes in the liver and kidney were also determined. Our results revealed that probiotics combined with cadmium increase this metal concentration in feces. As a result, blood, liver, and kidney Cd levels, as well as blood ALT and AST activities were lessened compared to the rat group treated with cadmium only. Besides, probiotics consumed simultaneously with cadmium attenuated histomorphological changes in the liver and kidney caused by cadmium. The rise in lactobacilli number in feces of rats treated simultaneously with cadmium and probiotics results in strong correlation with the increase of Cd concentration in their feces and the decrease of Cd concentration in their blood. We speculate that probiotics actively contribute to cadmium excretion through feces, probably, by its binding to their bacterial cell wall.
Neuroscience | 2018
Dragana Filipović; Andrijana Stanisavljević; Nebojsa Jasnic; Rick E. Bernardi; Dragos Inta; Ivana Perić; Peter Gass
The dysfunction of parvalbumin-positive (PV+) interneurons, the most abundant type of hippocampal GABAergic inhibitory interneuron, has been implicated in mood disorders. We recently reported that adult male Wistar rats exposed to three weeks of social isolation show depressive- and anxiety-like behaviors and a reduced number of PV+ interneurons in all hippocampal subregions. As GABA neurotransmission has been proposed as a potential therapeutic target of antidepressant and antipsychotic medications, we examined whether treatment with the antidepressant fluoxetine (Flx) (15 mg/kg/day) or the antipsychotic clozapine (Clz) (20 mg/kg/day) during three weeks of social isolation in rats offered protection from the isolation stress-induced reduction in the number of PV+ interneurons in hippocampal subregions. Using immunofluorescence analysis, we revealed that both chronic Flx and Clz partially prevented the isolation-induced changes. Flx prevented the reduction in the number of PV+ interneurons in the CA2, CA3, without affecting the CA1 and dentate gyrus DG areas, whereas Clz prevented this decrement in the CA2, CA3 and DG regions but not in CA1 areas. Moreover, Flx increased the number of PV+ interneurons in CA1 in control animals. These findings suggest that chronic administration of Flx or Clz may offer partial protection from social isolation stress via modulation of the hippocampal GABAergic system.
Central European Journal of Biology | 2012
Dragana Petrovic-Kosanovic; Ksenija Velickovic; Vesna Koko; Nebojsa Jasnic; Gordana Cvijic; Maja Milošević
Isolated rat adrenal medulla was analyzed by light and electron microscope after an acute (60 min) exposure to high ambient temperature (38°C). Under these conditions there was a significant rise in plasma adrenaline and noradrenaline. Stereological investigation by light microscopy showed a significant decrease in volume density of cells and an increase in the interstitium. At the ultrastructural level, the profile area of cells, nuclei and cytoplasm of adrenaline cells were significantly decreased. After the heat stress numbers of resting granules in adre naline and noradrenaline cells were significantly reduced, while the numbers of altered granules and empty containers in both types of adrenomedullar cells were significantly increased.
European Journal of Neuroscience | 2017
Tamara Dakic; Tanja Jevdjovic; Mina Peric; Ivana Bjelobaba; Milica Markelic; Bojana Milutinović; Iva Lakic; Nebojsa Jasnic; Jelena D. Djordjevic; Predrag Vujovic
In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6‐h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short‐term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular.
Current Vascular Pharmacology | 2018
Sonja Zafirovic; Emina Sudar-Milovanovic; Milan Obradovic; Jelena Djordjevic; Nebojsa Jasnic; Milica Labudović Borović; Esma R. Isenovic
BACKGROUND Oestradiol is an important regulatory factor with several positive effects on the cardiovascular (CV) system. We evaluated the molecular mechanism of the in vivo effects of oestradiol on the regulation of cardiac inducible nitric oxide (NO) synthase (iNOS) expression and activity. METHODS Male Wistar rats were treated with oestradiol (40 mg/kg, intraperitoneally) and after 24 h the animals were sacrificed. The concentrations of NO and L-Arginine (L-Arg) were determined spectrophotometrically. For protein expressions of iNOS, p65 subunit of nuclear factor-κB (NFκB-p65), Ras homolog gene family-member A (RhoA), angiotensin II receptor type 1 (AT1R), insulin receptor substrate 1 (IRS-1), p85, p110 and protein kinase B (Akt), Western blot method was used. Coimmunoprecipitation was used for measuring the association of IRS-1 with the p85 subunit of phosphatidylinositol- 3-kinase (PI3K). The expression of iNOS messenger ribonucleic acid (mRNA) was measured with the quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of the tissue was used to detect localization and expression of iNOS in heart tissue. RESULTS Oestradiol treatment reduced L-Arg concentration (p<0.01), iNOS mRNA (p<0.01) and protein (p<0.001) expression, level of RhoA (p<0.05) and AT1R (p<0.001) protein. In contrast, plasma NO (p<0.05), Akt phosphorylation at Thr308 (p<0.05) and protein level of p85 (p<0.001) increased after oestradiol treatment. CONCLUSION Our results suggest that oestradiol in vivo regulates cardiac iNOS expression via the PI3K/Akt signaling pathway, through attenuation of RhoA and AT1R.