Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nebojsa Kezunovic is active.

Publication


Featured researches published by Nebojsa Kezunovic.


European Journal of Neuroscience | 2011

Mechanism behind gamma band activity in the pedunculopontine nucleus

Nebojsa Kezunovic; Francisco J. Urbano; Christen Simon; James Hyde; Kristen Smith; Edgar Garcia-Rill

The pedunculopontine nucleus (PPN), part of the reticular activating system, modulates waking and paradoxical sleep. During waking and paradoxical sleep, EEG responses are characterized by low‐amplitude, high‐frequency oscillatory activity in the beta–gamma band range (∼20–80 Hz). We have previously reported that gamma band activity may be intrinsically generated by the membrane electroresponsiveness of PPN neurons, and that the neuronal ensemble generates different patterns of gamma activity in response to specific transmitters. This study attempted to identify the voltage‐gated calcium and potassium channels involved in the rising and falling phases of gamma oscillations in PPN neurons. We found that all rat (8–14 day) PPN cell types showed gamma oscillations in the presence of TTX and synaptic blockers when membrane potential was depolarized using current ramps. PPN neurons showed gamma oscillations when voltage‐clamped at holding potentials above −30 mV, suggesting that their origin may be spatially located beyond voltage‐clamp control. The average frequency for all PPN cell types was 23 ± 1 Hz and this increased under carbachol (47 ± 2 Hz; anova df = 64, t = 12.5, P < 0.001). The N‐type calcium channel blocker ω‐conotoxin‐GVIA partially reduced gamma oscillations, while the P/Q‐type blocker ω‐agatoxin‐IVA abolished them. Both ω‐CgTX and ω‐Aga blocked voltage‐dependent calcium currents, by 56 and 52% respectively. The delayed rectifier‐like potassium channel blocker α‐dendrotoxin also abolished gamma oscillations. In carbachol‐induced PPN population responses, ω‐agatoxin‐IVA reduced higher, and ω‐CgTx mostly lower, frequencies. These results suggest that voltage‐dependent P/Q‐ and, to a lesser extent, N‐type calcium channels mediate gamma oscillations in PPN.


Journal of Neurophysiology | 2010

Gamma band unit activity and population responses in the pedunculopontine nucleus.

Christen Simon; Nebojsa Kezunovic; Meijun Ye; James Hyde; Abdallah Hayar; David K. Williams; Edgar Garcia-Rill

The pedunculopontine nucleus (PPN) is involved in the activated states of waking and paradoxical sleep, forming part of the reticular activating system (RAS). The studies described tested the hypothesis that single unit and/or population responses of PPN neurons are capable of generating gamma band frequency activity. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. Regardless of cell type (I, II, or III) or type of response to the nonselective cholinergic receptor agonist carbachol (excitation, inhibition, biphasic), almost all PPN neurons fired at gamma band frequency, but no higher, when subjected to depolarizing steps (50 +/- 2 Hz, mean +/- SE). Nonaccommodating neurons fired at 18-100 Hz throughout depolarizing steps, while most accommodating neurons exhibited gamma band frequency of action potentials followed by gamma band membrane oscillations. These oscillations were blocked by the sodium channel blocker tetrodotoxin (TTX), suggesting that at least some are mediated by sodium currents. Population responses in the PPN showed that carbachol induced peaks of activation in the theta and gamma range, while glutamatergic receptor agonists induced overall increases in activity at theta and gamma frequencies, although in differing patterns. Gamma band activity appears to be a part of the intrinsic membrane properties of PPN neurons, and the population as a whole generates different patterns of gamma band activity under the influence of specific transmitters. Given sufficient excitation, the PPN may impart gamma band activation on its targets.


Sleep Medicine Reviews | 2013

Coherence and frequency in the reticular activating system (RAS)

Edgar Garcia-Rill; Nebojsa Kezunovic; James Hyde; Christen Simon; Paige Beck; Francisco J. Urbano

This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit (1) electrical coupling mainly in GABAergic cells, and (2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) (1) show electrical coupling, and (2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions.


Frontiers in Neurology | 2012

Gamma Band Activity in the Reticular Activating System

Francisco J. Urbano; Nebojsa Kezunovic; James Hyde; Christen Simon; Paige Beck; Edgar Garcia-Rill

This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep–wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep–wake oscillation that is orchestrated by brainstem–thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep–wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of pre-conscious awareness, and provide the essential stream of information for the formulation of many of our actions.


Experimental Brain Research | 2014

Gamma band activity in the RAS-intracellular mechanisms

Edgar Garcia-Rill; Nebojsa Kezunovic; Stasia D’Onofrio; Brennon Luster; James Hyde; Verónica Bisagno; Francisco J. Urbano

Abstract Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus, intralaminar parafascicular nucleus, and pontine SubCoeruleus nucleus dorsalis all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high-threshold, voltage-dependent P/Q-type calcium channels, or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries: an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking versus during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking versus REM sleep after sleep or REM sleep deprivation?


Journal of Applied Physiology | 2013

Spatiotemporal properties of high-speed calcium oscillations in the pedunculopontine nucleus

James Hyde; Nebojsa Kezunovic; Francisco J. Urbano; Edgar Garcia-Rill

The pedunculopontine nucleus (PPN) is a component of the reticular activating system (RAS), and is involved in the activated states of waking and rapid eye movement (REM) sleep. Gamma oscillations (approximately 30-80 Hz) are evident in all PPN neurons and are mediated by high-threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high-speed calcium imaging would reveal calcium-mediated oscillations in dendritic compartments in synchrony with patch-clamp recorded oscillations during depolarizing current ramps. Patch-clamped 8- to 16-day-old rat PPN neurons (n = 67 out of 121) were filled with Fura 2, Bis Fura, or OGB1/CHR. This study also characterized a novel ratiometric technique using Oregon Green BAPTA-1 (OGB1) with coinjections of a new long-stokes-shift dye, Chromeo 494 (CHR). Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker cadmium, or by the combination of ω-agatoxin-IVA, a specific P/Q-type calcium channel blocker, and ω-conotoxin-GVIA, a specific N-type calcium channel blocker. The calcium transients were evident in different dendrites (suggesting channels are present throughout the dendritic tree) along the sampled length without interruption (suggesting channels are evenly distributed), and appeared to represent a summation of oscillations present in the soma. We confirm that PPN calcium channel-mediated oscillations are due to P/Q- and N-type channels, and reveal that these channels are distributed along the dendrites of PPN cells.


American Journal of Physiology-cell Physiology | 2011

Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons

Christen Simon; Nebojsa Kezunovic; D. Keith Williams; Francisco J. Urbano; Edgar Garcia-Rill

The dorsal subcoeruleus nucleus (SubCD) is involved in generating two signs of rapid eye movement (REM) sleep: muscle atonia and ponto-geniculo-occipital (PGO) waves. We tested the hypothesis that single cell and/or population responses of SubCD neurons are capable of generating gamma frequency activity in response to intracellular stimulation or receptor agonist activation. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. All SubCD neurons (n = 103) fired at gamma frequency when subjected to depolarizing steps. Two statistically distinct populations of neurons were observed, which were distinguished by their high (>80 Hz, n = 24) versus low (35-80 Hz, n = 16) initial firing frequencies. Both cell types exhibited subthreshold oscillations in the gamma range (n = 43), which may underlie the gamma band firing properties of these neurons. The subthreshold oscillations were blocked by the sodium channel blockers tetrodotoxin (TTX, n = 21) extracellularly and N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314) intracellularly (n = 5), indicating they were sodium channel dependent. Gamma frequency subthreshold oscillations were observed in response to the nonspecific cholinergic receptor agonist carbachol (CAR, n = 11, d = 1.08) and the glutamate receptor agonists N-methyl-d-aspartic acid (NMDA, n = 12, d = 1.09) and kainic acid (KA, n = 13, d = 0.96), indicating that cholinergic and glutamatergic inputs may be involved in the activation of these subthreshold currents. Gamma band activity also was observed in population responses following application of CAR (n = 4, P < 0.05), NMDA (n = 4, P < 0.05) and KA (n = 4, P < 0.05). Voltage-sensitive, sodium channel-dependent gamma band activity appears to be a part of the intrinsic membrane properties of SubCD neurons.


Frontiers in Neurology | 2013

Muscarinic Modulation of High Frequency Oscillations in Pedunculopontine Neurons

Nebojsa Kezunovic; James Hyde; Belén Goitia; Verónica Bisagno; Francisco J. Urbano; Edgar Garcia-Rill

We previously reported that persistent application of the non-specific cholinergic agonist carbachol (CAR) increased the frequency of calcium channel-mediated oscillatory activity in pedunculopontine nucleus (PPN) neurons, which we identified as dependent on voltage-gated, high-threshold P/Q-type channels. Here, we tested the hypothesis that M2 muscarinic receptors and G-proteins associated with M2 receptors mediate the increase in oscillatory frequency in PPN neurons. We found, using depolarizing ramps, that patch clamped 9–12 day old rat PPN neurons (n = 189) reached their peak oscillatory activity around −20 mV membrane potential. Acute (short duration) application of CAR blocked the oscillatory activity through M2 muscarinic receptors, an effect blocked by atropine. However, persistent (long duration) application of CAR significantly increased the frequency of oscillatory activity in PPN neurons through M2 receptors [40 ± 1 Hz (with CAR) vs. 23 ± 1 Hz (without CAR); p < 0.001]. We then tested the effects of the G-protein antagonist guanosine 5′-[β-thio] diphosphate trilithium salt (GDP-β-S), and the G-protein agonist 5′-[γ-thio] triphosphate trilithium salt (GTP-γ-S). We found, using a three-step protocol in voltage-clamp mode, that the increase in the frequency of oscillations induced by M2 cholinergic receptors was linked to a voltage-dependent G-protein mechanism. In summary, these results suggest that persistent cholinergic input creates a permissive activation state in the PPN that allows high frequency P/Q-type calcium channel-mediated gamma oscillations to occur.


Journal of Neurophysiology | 2015

Modulation of gamma oscillations in the pedunculopontine nucleus by neuronal calcium sensor protein-1: relevance to schizophrenia and bipolar disorder

Stasia D'Onofrio; Nebojsa Kezunovic; James Hyde; Brennon Luster; Erick Messias; Francisco J. Urbano; Edgar Garcia-Rill

Reduced levels of gamma-band activity are present in schizophrenia and bipolar disorder patients. In the same disorders, increased neuronal calcium sensor protein-1 (NCS-1) expression was reported in a series of postmortem studies. These disorders are also characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). The discovery of gamma-band activity in the pedunculopontine nucleus (PPN), the cholinergic arm of the RAS, revealed that such activity was mediated by high-threshold calcium channels that are regulated by NCS-1. We hypothesized that NCS-1 normally regulates gamma-band oscillations through these calcium channels and that excessive levels of NCS-1, such as would be expected with overexpression, decrease gamma-band activity. We found that PPN neurons in rat brain slices manifested gamma-band oscillations that were increased by low levels of NCS-1 but suppressed by high levels of NCS-1. Our results suggest that NCS-1 overexpression may be responsible for the decrease in gamma-band activity present in at least some schizophrenia and bipolar disorder patients.


Pflügers Archiv: European Journal of Physiology | 2013

Visualization of fast calcium oscillations in the parafascicular nucleus.

James Hyde; Nebojsa Kezunovic; Francisco J. Urbano; Edgar Garcia-Rill

The parafascicular nucleus (Pf) is an ascending target of the pedunculopontine nucleus (PPN) and is part of the “non-specific” intralaminar thalamus. The PPN, part of the reticular activating system, is mainly involved in waking and rapid eye movement sleep. Gamma oscillations are evident in all Pf neurons and mediated by high threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high-speed calcium imaging would reveal calcium-mediated oscillations in synchrony with patch clamp recorded oscillations during depolarizing current ramps. Patch-clamped 9 to 19-day-old rat Pf neurons (n = 148, dye filled n = 61, control n = 87) were filled with Fura 2, Bis Fura, or Oregon Green BAPTA-1. Calcium transients were generated during depolarizing current ramps and visualized with a high-speed, wide-field fluorescence imaging system. Cells manifested calcium transients with oscillations in both somatic and proximal dendrite fluorescence recordings. Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker, cadmium, or the combination of ω-Agatoxin-IVA (AgA), a specific P/Q-type calcium channel blocker and ω-conotoxin-GVIA (CgTx), a specific N-type calcium channel blocker. We developed a viable methodology for studying high-speed oscillations without the use of multi-photon imaging systems.

Collaboration


Dive into the Nebojsa Kezunovic's collaboration.

Top Co-Authors

Avatar

Edgar Garcia-Rill

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

James Hyde

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christen Simon

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Brennon Luster

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Erick Messias

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Paige Beck

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Stasia D'Onofrio

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Verónica Bisagno

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

D. Keith Williams

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge