Necla Pehlivan
Recep Tayyip Erdoğan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Necla Pehlivan.
Plant and Cell Physiology | 2016
Necla Pehlivan; Li Sun; Philip Jarrett; Xiaojie Yang; Neelam Mishra; Lin Chen; Asim Kadioglu; Guoxin Shen; Hong Zhang
The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops.
Plant and Cell Physiology | 2017
Neelam Mishra; Li Sun; Xunlu Zhu; Jennifer L. Smith; Anurag P. Srivastava; Xiaojie Yang; Necla Pehlivan; Nardana Esmaeili; Hong Luo; Guoxin Shen; Don C. Jones; Dick L. Auld; John J. Burke; Paxton Payton; Hong Zhang
The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton. We report here that overexpression of OsSIZ1 in cotton results in higher net photosynthesis and better growth than wild-type cotton under drought and thermal stresses in growth chamber and greenhouse conditions. Additionally, this tolerance to abiotic stresses was correlated with higher fiber yield in both controlled-environment and field trials carried out under reduced irrigation and rainfed conditions. These results suggest that OsSIZ1 is a viable candidate gene to improve crop yields under water-limited and rainfed agricultural production systems.
Acta Biologica Hungarica | 2016
Neslihan Saruhan Guler; Necla Pehlivan
Hydrogen peroxide (H(2)O(2)) functions as a signal molecule in plants under abiotic and biotic stress. In this study, the role of exogenous H(2)O(2) in improving drought tolerance in two soybean cultivars (Glycine max L. Merrill) differing in their tolerance to drought was evaluated. Plants were grown in plastic pots with normal irrigation in a phytotron. Four weeks after radicle emergence, either 1 mM H(2)O(2) or distilled water was sprayed as foliar onto the leaves of each plant, after drought stress was applied. Leaf samples were harvested on the 4(th) and 7(th) days of the drought. Antioxidant-related enzyme activity, such as the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) content was measured during the drought period. Drought stress decreased leaf water potential, relative water content and photosynthetic pigment content but enhanced lipid peroxidation and endogenous H(2)O(2) concentration. By contrast, exogenous low dose H(2)O(2) improved water status, pigment content and lipid peroxidation under drought stress. Endogenous H(2)O(2) concentration was reduced by exogenous H(2)O(2) as compared to drought treatment alone. H(2)O(2) pre-treatment induced all the antioxidant enzyme activities, to a greater extent than the control leaves, during drought. H(2)O(2) pretreatment further enhanced the activities of antioxidant enzymes in the tolerant cultivar compared to the sensitive cultivar. Results suggested that low dose H(2)O(2) pre-treatment alleviated water loss and H(2)O(2) content and increased drought stress tolerance by inducing the antioxidant system.
Biologia | 2017
Nuran Durmus; Abdullah Muhammed Yesilyurt; Necla Pehlivan; Sengul Alpay Karaoglu
Abstract Agriculture needs to be sustained by organic processes in current era as population explosion energy and the number of individuals undernourished are raising public concerns. Global warming poses additional threat by lifting the damage of salt stress especially in agro-economically vital crops like maize whose cultivation dates back to Mayans. To that end, cost-effective and organic fungal agents may be great candidates in stress resilience. We isolated the fungal strain from the soil of tea plants and characterized that via 5.8 S rDNA gene with internal transcribed spacer ITS-1 and ITS-2 regions, then named the target strain as TA. Reduced maximum quantum efficiency of PS II (Fv/Fm), the effective quantum yield of PS2 (ΦPS2), electron transport rate (ETR), photochemical quenching (qP) and increased non-photochemical quenching (NPQ) were detected in maize plants stressed with dose dependent salt. Enhanced Fv/Fm, ΦPS2, ETR, qP and decreased NPQ was observed in TA primed plus NaCl treated plants. TA biopriming significantly increased the lengths, fresh and dry weights of root/shoots and decreased the lipid peroxidation. Maize seedlings bioprimed with TA had less MDA and higher soluble protein, proline, total chlorophyll, carotenoid and RWC under NaCl. Furthermore, SOD, GPX and GR activities were much more increased in root and leaves of TA primed seedlings, however CAT activity did not significantly change. This is the first report to our knowledge that TA reverses the damage of NaCl stress on maize growth through improving water status, antioxidant machinery and especially photosynthetic capacity.
Plant Science | 2018
Li Sun; Necla Pehlivan; Nardana Esmaeili; Weijia Jiang; Xiaojie Yang; Philip Jarrett; Neelam Mishra; Xunlu Zhu; Yifan Cai; Maheshika Herath; Guoxin Shen; Hong Zhang
Abiotic stresses are major threats to agricultural production. Drought and salinity as two of the major abiotic stresses cause billions of losses in agricultural productivity worldwide each year. Thus, it is imperative to make crops more tolerant. Overexpression of AVP1 or PP2A-C5 was previously shown to increase drought and salt stress tolerance, respectively, in transgenic plants. In this study, the hypothesis that co-overexpression of AVP1 and PP2A-C5 would combine their respective benefits and further improve salt tolerance was tested. The two genes were inserted into the same T-DNA region of the binary vector and then introduced into the Arabidopsis genome through Agrobacterium-mediated transformation. Transgenic Arabidopsis plants expressing both AVP1 and PP2A-C5 at relatively high levels were identified and analyzed. These plants displayed enhanced tolerance to NaCl compared to either AVP1 or PP2A-C5 overexpressing plants. They also showed tolerance to other stresses such as KNO3 and LiCl at harmful concentrations, drought, and phosphorus deficiency at comparable levels with either AVP1 or PP2A-C5 overexpressing plants. This study demonstrates that introducing multiple genes in single T-DNA region is an effective approach to create transgenic plants with enhanced tolerance to multiple stresses.
3 Biotech | 2018
Necla Pehlivan
Berries have gained public attention for their presumed positive effects on cancer patients. In contrast, the potential of berries to mitigate damage caused by abiotic stress in plants has not received significant attention. This is the first quantitative analysis of the efficacy of Vaccinium arctostaphylos L. (Ericaceae) fruit extract (VAFE) used to bioprime maize to limit damage caused by salt stress. Salt stressed maize seedlings exhibit lower quantum efficiency of photosystem II (Fv/Fm) and photosynthetic pigment content relative to untreated controls however, Fv/Fm increase caused by VAFE was found marginal. VAFE biopriming limited pigment loss and increased levels of antioxidant enzymes. It improved the growth of salt stressed seedlings by reducing salt-induced biomass loss, damage to roots and shoots, lipid oxidation, proline synthesis and endogenous hydrogen peroxide concentrations. In sum, VAFE biopriming may provide a new approach to improve yields in soils containing high salt levels as an alternative to traditional agricultural practice.
Scientific Reports | 2017
Weijia Jiang; Li Sun; Xiaojie Yang; Maohua Wang; Nardana Esmaeili; Necla Pehlivan; Rongli Zhao; Hong Zhang; Yun Zhao
Manipulation of a single abiotic stress-related gene could improve plant performance under abiotic stress conditions. To simultaneously increase plant tolerance to multiple stresses, it is usually required to overexpress two (or more) genes in transgenic plants. The common strategy is to assemble two or more expression cassettes, where each gene has its own promoter and terminator, within the same T-DNA. Does the arrangement of the two expression cassettes affect expression of the two transgenes? Can we use the Drosophila gypsy insulator sequence to increase the expression of the two transgenes? Answers to these questions would contribute to design better transformation vectors to maximize the effects of multi-gene transformation. Two Arabidopsis genes, PP2A-C5 and AVP1, and the gypsy insulator sequence were used to construct six transformation vectors with or without the gypsy insulator bracketing the two expression cassettes: uni-directional transcription, divergent transcription, and convergent transcription. Total RNAs were isolated for reverse transcription- quantitative real-time polymerase chain reaction (RT-qPCR) assays and a thorough statistical analysis was conducted for the RT-qPCR data. The results showed that the gypsy insulator does promote the expression of two transgenes in transgenic plants. Besides, the plants containing the divergent transcription cassettes tend to have more correlated expression of both genes.
Acta Physiologiae Plantarum | 2016
Neslihan Saruhan Guler; Necla Pehlivan; Sengul Alpay Karaoglu; Sule Guzel; Arif Bozdeveci
Acta Physiologiae Plantarum | 2017
Necla Pehlivan; Abdullah Muhammed Yesilyurt; Nuran Durmus; Sengul Alpay Karaoglu
Hacettepe Journal of Biology and Chemistry | 2018
Sengul Alpay Karaoglu; Arif Bozdeveci; Necla Pehlivan