Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neelima Bhargava is active.

Publication


Featured researches published by Neelima Bhargava.


Neuroscience | 2007

Embryonic motoneuron-skeletal muscle co-culture in a defined system

Mainak Das; John W. Rumsey; Cassie Gregory; Neelima Bhargava; Jung Fong Kang; Peter Molnar; Lisa Riedel; Xiufang Guo; James J. Hickman

This paper describes a significant biotechnological advancement by creating a minimalist serum-free defined system to co-culture rat mammalian nerve and muscle cells in order to form functional neuromuscular junctions. To date, all the known in vitro nerve and muscle co-culture models use serum containing media; and while functional neuromuscular junctions (NMJ) are described, they failed to detail or quantify the minimum factors needed to recreate the NMJ in vitro. In this work, we demonstrate the development of a defined motoneuron and muscle co-culture system resulting in the formation of NMJs including: 1) a new culture technique, 2) a novel serum-free medium formulation and 3) a synthetic self-assembled monolayer (SAM) substrate N-1 [3-(trimethoxysilyl) propyl] diethylenetriamine (DETA). We characterized the culture by morphology, immunocytochemistry, electrophysiology and videography. This model system provides a better understanding of the minimal growth factor and substrate interactions necessary for NMJ formation and provides a basic system that can be utilized for nerve-muscle tissue engineering, regenerative medicine and development of limb prosthetics.


Biomaterials | 2010

A Defined Long-Term In Vitro Tissue Engineered Model of Neuromuscular Junctions

Mainak Das; John W. Rumsey; Neelima Bhargava; Maria Stancescu; James J. Hickman

Neuromuscular junction (NMJ) formation, occurring between motoneurons and skeletal muscle, is a complex multistep process involving a variety of signaling molecules and pathways. In vitro motoneuron-muscle co-cultures are powerful tools to study the role of different growth factors, hormones and cellular structures involved in NMJ formation. In this study, a serum-free culture system utilizing defined temporal growth factor application and a non-biological substrate resulted in the formation of robust NMJs. The system resulted in long-term survival of the co-culture and selective expression of neonatal myosin heavy chain, a marker of myotube maturation. NMJ formation was verified by colocalization of dense clusters of acetylcholine receptors visualized using alpha-bungarotoxin and synaptophysin containing vesicles present in motoneuron axonal terminals. This model will find applications in basic NMJ research and tissue engineering applications such as bio-hybrid device development for limb prosthesis and regenerative medicine as well as for high-throughput drug and toxin screening applications.


PLOS ONE | 2010

A New Target for Amyloid Beta Toxicity Validated by Standard and High-Throughput Electrophysiology

Kucku Varghese; Peter Molnar; Mainak Das; Neelima Bhargava; Stephen Lambert; Mark S. Kindy; James J. Hickman

Background Soluble oligomers of amyloid beta (Aβ) are considered to be one of the major contributing factors to the development of Alzheimers disease. Most therapeutic development studies have focused on toxicity directly at the synapse. Methodology/Principal Findings Patch clamp studies detailed here have demonstrated that soluble Aβ can also cause functional toxicity, namely it inhibits spontaneous firing of hippocampal neurons without significant cell death at low concentrations. This toxicity will eventually lead to the loss of the synapse as well, but may precede this loss by a considerable amount of time. In a key technological advance we have reproduced these results utilizing a fast and simple method based on extracellular electrophysiological recording of the temporal electrical activity of cultured hippocampal neurons using multielectrode arrays (MEAs) at low concentrations of Aβ (1–42). We have also shown that this functional deficit can be reversed through use of curcumin, an inhibitor of Aβ oligomerization, using both analysis methods. Conclusions/Significance The MEA recording method utilized here is non-invasive, thus long term chronic measurements are possible and it does not require precise positioning of electrodes, thus it is ideal for functional screens. Even more significantly, we believe we have now identified a new target for drug development for AD based on functional toxicity of hippocampal neurons that could treat neurodegenerative diseases prior to the development of mild cognitive impairment.


In Vitro Cellular & Developmental Biology – Animal | 2005

ADULT RAT SPINAL CORD CULTURE ON AN ORGANOSILANE SURFACE IN A NOVEL SERUM-FREE MEDIUM

Mainak Das; Neelima Bhargava; Cassie Gregory; Lisa Riedel; Peter Molnar; James J. Hickman

SummaryIn this study, we have documented by morphological analysis, immunocytochemistry, and electrophysiology, the development of a culture system that promotes the growth and long-term survival of dissociated adult rat spinal cord neurons. This system comprises a patternable, nonbiological, cell growth-promoting organosilane substrate coated on a glass surface and an empirically derived novel serum-free medium, supplemented with specific growth factors (acidic fibroblast growth factor, heparin sulfate, neurotrophin-3, brain-derived neurotrophic factor, glial-derived neurotrophic factor, cardiotrophin-1, and vitronectin). Neurons were characterized by immunoreactivity for neurofilament 150, neuron-specific enolase, Islet-1 antibodies, electrophysiology, and the cultures were maintained for 4–6 wk. This culture system could be a useful tool for the study of adult mammalian spinal neurons in a functional in vitro system.


Biomaterials | 2009

Skeletal Muscle Tissue Engineering: A Maturation Model Promoting Long Term Survival of Myotubes, Structural Development of the Excitation - Contraction Coupling Apparatus and Neonatal Myosin Heavy Chain Expression

Mainak Das; John W. Rumsey; Neelima Bhargava; Maria Stancescu; James J. Hickman

The use of defined in vitro systems to study the developmental and physiological characteristics of a variety of cell types is increasing, due in large part to their ease of integration with tissue engineering, regenerative medicine, and high-throughput screening applications. In this study, myotubes derived from fetal rat hind limbs were induced to develop several aspects of mature muscle including: sarcomere assembly, development of the excitation-contraction coupling apparatus and myosin heavy chain (MHC) class switching. Utilizing immunocytochemical analysis, anisotropic and isotropic band formation (striations) within the myotubes was established, indicative of sarcomere formation. In addition, clusters of ryanodine receptors were colocalized with dihydropyridine complex proteins which signaled development of the excitation-contraction coupling apparatus and transverse tubule biogenesis. The myotubes also exhibited MHC class switching from embryonic to neonatal MHC. Lastly, the myotubes survived significantly longer in culture (70-90 days) than myotubes from our previously developed system (20-25 days). These results were achieved by modifying the culture timeline as well as the development of a new medium formulation. This defined model system for skeletal muscle maturation supports the goal of developing physiologically relevant muscle constructs for use in tissue engineering and regenerative medicine as well as for high-throughput screening applications.


Journal of Neuroscience Methods | 2009

Regeneration and characterization of adult mouse hippocampal neurons in a defined in vitro system.

Kucku Varghese; Mainak Das; Neelima Bhargava; Maria Stancescu; Peter Molnar; Mark S. Kindy; James J. Hickman

Although the majority of human illnesses occur during adulthood, most of the available in vitro disease models are based upon cells obtained from embryonic/fetal tissues because of the difficulties involved with culturing adult cells. Development of adult mouse neuronal cultures has a special significance because of the abundance of transgenic disease models that use this species. In this study a novel cell culture method has been developed that supports the long-term survival and physiological regeneration of adult mouse hippocampal cells in a serum-free defined environment. In this well-defined, controlled system, adult mouse hippocampal cells survived for up to 21 days in culture. The cultured cells exhibited typical hippocampal neuronal morphology and electrophysiological properties after recovery from the trauma of dissociation, and stained positive for the expected neuronal markers. This system has great potential as an investigative tool for in vitro studies of adult diseases, the aging brain or transgenic models of age-associated disorders.


In Vitro Cellular & Developmental Biology – Animal | 2009

Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation

Mainak Das; John W. Rumsey; Neelima Bhargava; Cassie Gregory; Lisa Riedel; Jung Fong Kang; James J. Hickman

This work describes the step-by-step development of a novel, serum-free, in vitro cell culture system resulting in the formation of robust, contracting, multinucleate myotubes from dissociated skeletal muscle cells obtained from the hind limbs of fetal rats. This defined system consisted of a serum-free medium formulation developed by the systematic addition of different growth factors as well as a nonbiological cell growth promoting substrate, N-1[3-(trimethoxysilyl) propyl] diethylenetriamine. Each growth factor in the medium was experimentally evaluated for its effect on myotube formation. The resulting myotubes were evaluated immunocytochemically using embryonic skeletal muscle, specifically the myosin heavy chain antibody. Based upon this analysis, we propose a new skeletal muscle differentiation protocol that reflects the roles of the various growth factors which promote robust myotube formation. Further observation noted that the proposed skeletal muscle differentiation technique also supported muscle–nerve coculture. Immunocytochemical evidence of nerve–muscle coculture has also been documented. Applications for this novel culture system include biocompatibility and skeletal muscle differentiation studies, understanding myopathies, neuromuscular disorders, and skeletal muscle tissue engineering.


Experimental Neurology | 2008

Temporal neurotransmitter conditioning restores the functional activity of adult spinal cord neurons in long-term culture

Mainak Das; Neelima Bhargava; Abhijeet Bhalkikar; Jung Fong Kang; James J. Hickman

The ability to culture functional adult mammalian spinal cord neurons represents an important step in the understanding and treatment of a spectrum of neurological disorders including spinal cord injury. Previously, the limited functional recovery of these cells, as characterized by a diminished ability to initiate action potentials and to exhibit repetitive firing patterns, has arisen as a major impediment to their physiological relevance. In this report, we demonstrate that single temporal doses of the neurotransmitters serotonin, glutamate (N-acetyl-DL-glutamic acid) and acetylcholine-chloride lead to the full electrophysiological functional recovery of adult mammalian spinal cord neurons, when they are cultured under defined serum-free conditions. Approximately 60% of the neurons treated regained their electrophysiological signature, often firing single, double and, most importantly, multiple action potentials.


Biotechnology Progress | 2009

Patterning of Diverse Mammalian Cell Types in Serum Free Medium with Photoablation

Vipra Dhir; Anupama Natarajan; Maria Stancescu; Anindarupa Chunder; Neelima Bhargava; Mainak Das; Lei Zhai; Peter Molnar

Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer‐by‐layer self‐assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short‐term stability and low‐protein adsorption resistance. In this study, direct photolithographic patterning of two types of multilayers, PAA (poly acrylic acid)/PAAm (poly acryl amide) and PAA/PAH (poly allyl amine hydrochloride), were developed to pattern mammalian neuronal, skeletal, and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a cytophobic surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell‐selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108‐15 cells) to a greater extent, while providing little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods.


Methods of Molecular Biology | 2007

Synaptic Connectivity in Engineered Neuronal Networks

Peter Molnar; Jung-Fong Kang; Neelima Bhargava; Mainak Das; James J. Hickman

In this study, we have demonstrated a method to organize cells in dissociated cultures using engineered chemical clues on the culture surface and determined their connectivity patterns. Although almost all elements of the synaptic transmission machinery between neurons or between neurons and muscle fibers can be studied separately in single-cell models in dissociated cultures, the difficulty of clarifying the complex interactions between these elements makes random cultures not particularly suitable for specific studies. Factors affecting synaptic transmission are generally studied in organotypic cultures, brain slices, or in vivo where the cellular architecture generally remains intact. However, by utilizing engineered neuronal networks, complex phenomenon such as synaptic transmission can be studied in a simple, functional, cell culture-based system. We have utilized self-assembled monolayers (SAMs) and photolithography to create the surface templates. Embryonic hippocampal cells, plated on the resultant patterns in serum-free medium, followed the surface clues and formed the engineered neuronal networks. Basic electrophysiological methods were applied to characterize the synaptic connectivity in these engineered two-cell networks.

Collaboration


Dive into the Neelima Bhargava's collaboration.

Top Co-Authors

Avatar

Mainak Das

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

James J. Hickman

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Maria Stancescu

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Rumsey

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Jung Fong Kang

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Lisa Riedel

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jung-Fong Kang

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Mark S. Kindy

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge