Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neelima Mishra is active.

Publication


Featured researches published by Neelima Mishra.


Trends in Parasitology | 2009

Why is it important to study malaria epidemiology in India

Vineeta Singh; Neelima Mishra; Gauri Awasthi; A. P. Dash; Aparup Das

Malaria is a major vector-borne disease in India. Based on vast geographic areas with associated topographic and climatic diversity, the variable malaria epidemiology in India is associated with high parasite genetic diversity and rapidly evolving drug resistance, differential distribution of vector species and emerging insecticide resistance and underlying human genetic diversity and past evolutionary histories. Further, changing climatic patterns have possibly changed malaria epidemiology to a great extent. The outcome of these changes is an increased incidence of Plasmodium falciparum over the P. vivax malaria in recent years. Accordingly, the drug and insecticide application policy in India has changed too. The above facts and associated rapid shifting trend of malaria epidemiology makes India a hot-spot for malaria research.


Acta Tropica | 2012

Malaria in India: The Center for the Study of Complex Malaria in India

Aparup Das; Anupkumar R. Anvikar; Lauren J. Cator; Ramesh C. Dhiman; Alex Eapen; Neelima Mishra; Bhupinder N. Nagpal; Nutan Nanda; K. Raghavendra; Andrew F. Read; Surya K. Sharma; O. P. Singh; Vineeta Singh; Photini Sinnis; Harish C Srivastava; Steven A. Sullivan; Patrick L. Sutton; Matthew B. Thomas; Jane M. Carlton; Neena Valecha

Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ∼1.6 million cases and ∼1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India.


Acta Tropica | 2013

Genetic deletion of HRP2 and HRP3 in Indian Plasmodium falciparum population and false negative malaria rapid diagnostic test.

Navin Kumar; Veena Pande; Rajendra M Bhatt; Naman K Shah; Neelima Mishra; Bina Srivastava; Neena Valecha; Anupkumar R. Anvikar

Genetic polymorphisms in diagnostic antigens are important factors responsible for variable performance of rapid diagnostic tests. Additionally, the failure of antigen expression due to gene deletion may also contribute to variable performance. We report Indian Plasmodium falciparum field isolates lacking both Pfhrp2 and Pfhrp3 genes leading to false negative results of rapid diagnostic tests. The study highlights need to determine the prevalence of P. falciparum isolates lacking these genes in larger field populations in India.


Malaria Journal | 2012

Genetic variation in histidine rich proteins among Indian Plasmodium falciparum population: possible cause of variable sensitivity of malaria rapid diagnostic tests

Navin Kumar; Jai Pn Singh; Veena Pande; Neelima Mishra; Bina Srivastava; Ridhima Kapoor; Neena Valecha; Anupkumar R. Anvikar

BackgroundRapid diagnostic tests (RDTs) have revolutionized the diagnosis of malaria. Among the various factors affecting RDTs sensitivity is genetic variation of the antigen used. The genetic variation in PfHRP2 and PfHRP3 proteins was studied among the Indian Plasmodium falciparum isolates.MethodsOne hundred and forty isolates of P. falciparum were collected from six geographical regions of India. Target genes encoding PfHRP2 and PfHRP3 antigens were sequenced to study genetic polymorphism. Minimum detection limit giving a positive rapid diagnostic test was also determined.ResultsExtensive variations were observed in amino acid repeat types of PfHRP2 and PfHRP3. PfHRP2 exhibited more polymorphism than PfHRP3. Significant relation was observed between type 2 and type 7 repeats and RDT detection rate as higher number of these repeats showed better sensitivity with RDTs.ConclusionThe results provide insights into the genetic diversity of Pfhrp2 and Pfhrp3 genes among Indian P. falciparum population and its relation to RDT sensitivity.


Antimicrobial Agents and Chemotherapy | 2015

Surveillance of Artemisinin Resistance in Plasmodium falciparum in India Using the kelch13 Molecular Marker

Neelima Mishra; Surendra Kumar Prajapati; Kamlesh Kaitholia; Ram Suresh Bharti; Bina Srivastava; Sobhan Phookan; Anupkumar R. Anvikar; Vas Dev; Gagan Singh Sonal; A. C. Dhariwal; Nicholas J. White; Neena Valecha

ABSTRACT Malaria treatment in Southeast Asia is threatened with the emergence of artemisinin-resistant Plasmodium falciparum. Genome association studies have strongly linked a locus on P. falciparum chromosome 13 to artemisinin resistance, and recently, mutations in the kelch13 propeller region (Pfk-13) were strongly linked to resistance. To date, this information has not been shown in Indian samples. Pfk-13 mutations were assessed in samples from efficacy studies of artemisinin combination treatments in India. Samples were PCR amplified and sequenced from codon 427 to 727. Out of 384 samples, nonsynonymous mutations in the propeller region were found in four patients from the northeastern states, but their presence did not correlate with ACT treatment failures. This is the first report of Pfk-13 point mutations from India. Further phenotyping and genotyping studies are required to assess the status of artemisinin resistance in this region.


Malaria Journal | 2014

Chloroquine efficacy studies confirm drug susceptibility of Plasmodium vivax in Chennai, India.

Sneh Shalini; Saumyadripta Chaudhuri; Patrick L. Sutton; Neelima Mishra; Nalini Srivastava; Joseph k David; K. John Ravindran; Jane M. Carlton; Alex Eapen

BackgroundAssessing the Plasmodium vivax burden in India is complicated by the potential threat of an emerging chloroquine (CQ) resistant parasite population from neighbouring countries in Southeast Asia. Chennai, the capital of Tamil Nadu and an urban setting for P. vivax in southern India, was selected as a sentinel site for investigating CQ efficacy and sensitivity in vivax malaria.MethodsCQ efficacy was evaluated with a 28-day in vivo therapeutic study, while CQ sensitivity was measured with an in vitro drug susceptibility assay. In both studies, isolates also underwent molecular genotyping to investigate correlations between parasite diversity and drug susceptibility to CQ. Molecular genotyping included sequencing a 604 base pair (bp) fragment of the P. vivax multidrug resistant gene-1 (Pvmdr1) for single nucleotide polymorphisms (SNPs) and also the amplification of eight microsatellite (MS) loci located across the genome on eight different chromosomes.ResultsIn the 28-day in vivo study (N=125), all subjects were aparasitaemic by Day 14. Passive case surveillance continuing beyond Day 28 in 22 subjects exposed 17 recurrent infections, which ranged from 44 to 148 days post-enrollment. Pvmdr1 sequencing of these recurrent infections revealed that 93.3% had identical mutant haplotypes (958M/Y976/1076L) to their baseline Day 0 infection. MS genotyping further revealed that nine infection pairs were related with ≥75% haplotype similarity (same allele at six or more loci). To test the impact of this mutation on CQ efficacy, an in vitro drug assay (N=68) was performed. No correlation between IC50 values and the percentage of ring-stage parasites prior to culture was observed (rsadj: -0.00063, p = 0.3307) and the distribution of alleles among the Pvmdr1 SNPs and MS haplotypes showed no significant associations with IC50 values.ConclusionsPlasmodium vivax was found to be susceptible to CQ drug treatment in both the in vivo therapeutic drug study and the in vitro drug assay. Though the mutant 1076L of Pvmdr1 was found in a majority of isolates tested, this single mutation did not associate with CQ resistance. MS haplotypes revealed strong heterogeneity in this population, indicating a low probability of reinfection with highly related haplotypes.


Malaria Journal | 2011

Prescription practices and availability of artemisinin monotherapy in India: where do we stand?

Neelima Mishra; Anupkumar R. Anvikar; Naman K Shah; Vineet Kumar Kamal; Surya K. Sharma; Harish C Srivastava; Manoj K. Das; Khageswar Pradhan; Hemant Kumar; Yogendra Kumar Gupta; Pooja Gupta; A. P. Dash; Neena Valecha

BackgroundThe World Health Organization has urged all member states to deploy artemisinin-based combination therapy and progressively withdraw oral artemisinin monotherapies from the market due to their high recrudescence rates and to reduce the risk of drug resistance. Prescription practices by physicians and the availability of oral artemisinin monotherapies with pharmacists directly affect the pattern of their use. Thus, treatment practices for malaria, with special reference to artemisinin monotherapy prescription, in selected states of India were evaluated.MethodsStructured, tested questionnaires were used to conduct convenience surveys of physicians and pharmacists in eleven purposively selected districts across six states in 2008. In addition, exit interviews of patients with a diagnosis of uncomplicated malaria or a prescription for an anti-malarial drug were also performed. Logistic regression was used to determine patient clinical care, and institutional factors associated with artemisinin monotherapy prescription.ResultsFive hundred and eleven physicians from 196 health facilities, 530 pharmacists, and 1, 832 patients were interviewed. Artemisinin monotherapy was available in 72.6% of pharmacies and was prescribed by physicians for uncomplicated malaria in all study states. Exit interviews among patients confirmed the high rate of use of artemisinin monotherapy with 14.8% receiving such a prescription. Case management, i.e. method of diagnosis and overall treatment, varied by state and public or private sector. Treatment in the private sector (OR 8.0, 95%CI: 3.8, 17) was the strongest predictor of artemisinin monotherapy prescription when accounting for other factors. Use of the combination therapy recommended by the national drug policy, artesunate + sulphadoxine-pyrimethamine, was minimal (4.9%), with the exception of one state.ConclusionsArtemisinin monotherapy use was widespread across India in 2008. The accessible sale of oral artemisinin monotherapy in retail market and an inadequate supply of recommended drugs in the public sector health facilities promoted its prescription. This study resulted in notifications to all state drug controllers in India to withdraw the oral artemisinin formulations from the market. In 2010, artesunate + sulphadoxine-pyrimethamine became the universal first-line treatment for confirmed Plasmodium falciparum malaria and was deployed at full scale.


Antimicrobial Agents and Chemotherapy | 2013

Nonrandomized Controlled Trial of Artesunate plus Sulfadoxine-Pyrimethamine with or without Primaquine for Preventing Posttreatment Circulation of Plasmodium falciparum Gametocytes

Naman K. Shah; Allan Schapira; Jonathan J. Juliano; Bina Srivastava; Pia D.M. MacDonald; Charles Poole; Anup Anvikar; Steven R. Meshnick; Neena Valecha; Neelima Mishra

ABSTRACT Artemisinin combination therapies eliminate immature Plasmodium falciparum gametocytes but not mature gametocytes, which may persist for up to 1 month posttreatment. A single dose of primaquine, which is inexpensive and effective against mature gametocytes, could be added to further reduce the potential for posttreatment parasite transmission. Currently, we have few data regarding the effectiveness or safety of doing so. We collected data from 21 therapeutic efficacy trials of the National Antimalarial Drug Resistance Monitoring System of India conducted during 2009 to 2010, wherein 9 sites used single-dose primaquine (0.75 mg/kg of body weight) administered on day 2 along with artesunate plus sulfadoxine-pyrimethamine (AS+SP) while 12 did not. We estimated the effect of primaquine on posttreatment gametocyte clearance and the total number of gametocyte-weeks as determined by microscopy. We compared the median area under the curve for gametocyte density and reported adverse events. One thousand three hundred thirty-five patients completed the antimalarial drug treatment. Adjusting for region, primaquine increased the rate of gametocyte clearance (hazard ratio, 1.9; 95% confidence interval [CI], 1.1 to 3.3), prevented 45% (95% CI, 19 to 62) of posttreatment gametocyte-weeks, and decreased the area under the gametocyte density curve over the 28-day follow-up compared to AS+SP alone (P value = 0.01). The results were robust to other adjustment sets, and the estimated effect of primaquine increased during sensitivity analysis on the measurement of exposure time. No serious adverse events were detected. In conclusion, the addition of primaquine to AS+SP was effective in reducing the posttreatment presence of P. falciparum gametocytes. Primaquine was well tolerated and could be administered along with an artemisinin combination therapy as the first-line therapy.


Scientific Reports | 2017

Establishment and application of a novel isothermal amplification assay for rapid detection of chloroquine resistance (K76T) in Plasmodium falciparum

Madhvi Chahar; Neelima Mishra; Anup Anvikar; Rajnikant Dixit; Neena Valecha

Chloroquine (CQ) resistance in Plasmodium falciparum is determined by the mutations in the chloroquine resistance transporter (Pfcrt) gene. The point mutation at codon 76 (K76T), which has been observed in more than 91% of P. falciparum isolates in India, is the major determinant of CQ resistance. To overcome the limitations and challenges of traditional methods, in this investigation we developed an easy to use loop mediated isothermal amplification (LAMP) protocol for rapid detection of the K76T mutation associated with CQ resistance in P. falciparum with naked eye visualization. In- house designed primers were synthesized and optimized to specifically distinguish the CQ resistant mutants of P. falciparum. The LAMP reaction was optimal at 61 °C for 60 min and calcein dye was added prior to amplification to enable visual detection. We demonstrate the detection limit of <2 ng/μl respectively, supporting the high sensitivity of this calcein based LAMP method. To the best of our knowledge this is the first report on the establishment of an easy, reliable and cost effective LAMP assay for rapid and specific detection of highly CQ resistance in P. falciparum malaria.


Biochemistry | 2017

Engineering Nucleotide Specificity of Succinyl-CoA Synthetase in Blastocystis: The Emerging Role of Gatekeeper Residues

Kapil Vashisht; Sonia Verma; Sunita Gupta; Andrew M. Lynn; Rajnikant Dixit; Neelima Mishra; Neena Valecha; Karleigh Hamblin; Robin Maytum; Kailash C. Pandey; Mark van der Giezen

Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called “electrostatic gatekeeper effect”. This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the “electrostatic gatekeeper effect”. These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.

Collaboration


Dive into the Neelima Mishra's collaboration.

Top Co-Authors

Avatar

Neena Valecha

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Anupkumar R. Anvikar

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Bina Srivastava

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Naman K Shah

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Roma Rana

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Kamlesh Kaitholia

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Manoj K. Das

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Anup Anvikar

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Gagan Singh Sonal

Ministry of Health and Family Welfare

View shared research outputs
Top Co-Authors

Avatar

Navin Kumar

National Institute of Malaria Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge