Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neelu Yadav is active.

Publication


Featured researches published by Neelu Yadav.


Molecular Endocrinology | 2012

RhoA as a mediator of clinically relevant androgen action in prostate cancer cells.

Lucy J. Schmidt; Kelly Duncan; Neelu Yadav; Kevin M. Regan; Alissa R. Verone; Christine M. Lohse; Elena Pop; Kristopher Attwood; Gregory E. Wilding; James L. Mohler; Thomas J. Sebo; Donald J. Tindall; Hannelore V. Heemers

Recently, we have identified serum response factor (SRF) as a mediator of clinically relevant androgen receptor (AR) action in prostate cancer (PCa). Genes that rely on SRF for androgen responsiveness represent a small fraction of androgen-regulated genes, but distinguish benign from malignant prostate, correlate with aggressive disease, and are associated with biochemical recurrence. Thus, understanding the mechanism(s) by which SRF conveys androgen regulation to its target genes may provide novel opportunities to target clinically relevant androgen signaling. Here, we show that the small GTPase ras homolog family member A (RhoA) mediates androgen-responsiveness of more than half of SRF target genes. Interference with expression of RhoA, activity of the RhoA effector Rho-associated coiled-coil containing protein kinase 1 (ROCK), and actin polymerization necessary for nuclear translocation of the SRF cofactor megakaryocytic acute leukemia (MAL) prevented full androgen regulation of SRF target genes. Androgen treatment induced RhoA activation, increased the nuclear content of MAL, and led to MAL recruitment to the promoter of the SRF target gene FHL2. In clinical specimens RhoA expression was higher in PCa cells than benign prostate cells, and elevated RhoA expression levels were associated with aggressive disease features and decreased disease-free survival after radical prostatectomy. Overexpression of RhoA markedly increased the androgen-responsiveness of select SRF target genes, in a manner that depends on its GTPase activity. The use of isogenic cell lines and a xenograft model that mimics the transition from androgen-stimulated to castration-recurrent PCa indicated that RhoA levels are not altered during disease progression, suggesting that RhoA expression levels in the primary tumor determine disease aggressiveness. Androgen-responsiveness of SRF target genes in castration-recurrent PCa cells continued to rely on AR, RhoA, SRF, and MAL and the presence of intact SRF binding sites. Silencing of RhoA, use of Rho-associated coiled-coil containing protein kinase 1 inhibitors, or an inhibitor of SRF-MAL interaction attenuated (androgen-regulated) cell viability and blunted PCa cell migration. Taken together, these studies demonstrate that the RhoA signaling axis mediates clinically relevant AR action in PCa.


Biochimica et Biophysica Acta | 2013

Mitochondrial DNA mutations and breast tumorigenesis

Neelu Yadav; Dhyan Chandra

Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.


Journal of Biological Chemistry | 2013

Bim, a proapoptotic protein, up-regulated via transcription factor E2F1-dependent mechanism, functions as a prosurvival molecule in cancer.

Raghu Gogada; Neelu Yadav; Junwei Liu; Shaohua Tang; Dianmu Zhang; Andrea Schneider; Athul Seshadri; Leimin Sun; C. Marcelo Aldaz; Dean G. Tang; Dhyan Chandra

Background: The BH3-only protein Bim is conventionally considered a proapoptotic protein because it induces Bax/Bak oligomerization on mitochondria. Results: Bim is constitutively up-regulated in cancer cells via an E2F1-dependent mechanism. Silencing of Bim induces cancer cell apoptosis. Conclusion: Bim phosphorylation and its sequestration by prosurvival proteins Bcl-xL/Mcl-1 may suppress proapoptotic function of Bim. Significance: Bim may possess prosurvival functions in epithelial cancer cells. Proapoptotic Bcl-2 homology 3-only protein Bim plays an important role in Bax/Bak-mediated cytochrome c release and apoptosis. Here, we provide evidence for a novel prosurvival function of Bim in cancer cells. Bim was constitutively overexpressed in multiple prostate and breast cancer cells as well as in primary tumor cells. Quantitative real time PCR analysis showed that Bim was transcriptionally up-regulated. We have identified eight endogenous E2F1-binding sites on the Bim promoter using in silico analysis. Luciferase assay demonstrated that Bim expression was E2F1-dependent as mutation of the E2F1-binding sites on the Bim promoter inhibited luciferase activities. In support, E2F1 silencing led to the loss of Bim expression in cancer cells. Bim primarily localized to mitochondrial and cytoskeleton-associated fractions. Bim silencing or microinjection of anti-Bim antibodies into the cell cytoplasm resulted in cell rounding, detachment, and subsequent apoptosis. We observed up-regulation of prosurvival proteins Bcl-xL and Mcl-1, which sequester Bim in cancer cells. In addition, a phosphorylated form of Bim was also elevated in cancer cells. These findings suggest that the constitutively overexpressed Bim may function as a prosurvival molecule in epithelial cancer cells, and phosphorylation and association with Bcl-xL/Mcl-1 block its proapoptotic functions.


Drug Discovery Today | 2015

Restoration of mitochondria function as a target for cancer therapy

Tariq A. Bhat; Sandeep Kumar; Ajay K. Chaudhary; Neelu Yadav; Dhyan Chandra

Defective oxidative phosphorylation has a crucial role in the attenuation of mitochondrial function, which confers therapy resistance in cancer. Various factors, including endogenous heat shock proteins (HSPs) and exogenous agents such as dichloroacetate, restore respiratory and other physiological functions of mitochondria in cancer cells. Functional mitochondria might ultimately lead to the restoration of apoptosis in cancer cells that are refractory to current anticancer agents. Here, we summarize the key reasons contributing to mitochondria dysfunction in cancer cells and how restoration of mitochondrial function could be exploited for cancer therapeutics.


Carcinogenesis | 2012

Neem oil limonoids induces p53-independent apoptosis and autophagy.

Pragya Srivastava; Neelu Yadav; Ravi Lella; Andrea Schneider; Anthony Jones; Timothy Marlowe; Gabrielle Lovett; Kieran O'Loughlin; Hans Minderman; Raghu Gogada; Dhyan Chandra

Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.


Mitochondrion | 2014

Mitochondrial and postmitochondrial survival signaling in cancer.

Neelu Yadav; Dhyan Chandra

Cancer cells are resistant to conventional chemotherapy and radiotherapy, however, the molecular mechanisms of resistance to therapy remain unclear. Cellular survival machinery protects mitochondrial integrity against endogenous or exogenous stresses. Prodeath molecules orchestrate around mitochondria to initiate and execute cell death in cancer, and also play an underappreciated role in survival of cancer cells. Prosurvival mechanisms can operate at mitochondrial and postmitochondrial levels to attenuate core apoptotic death program. It is intriguing to explore how prosurvival and prodeath molecules crosstalk to regulate mitochondrial functions leading to increased cancer cell survival. This review describes some putative survival mechanisms at mitochondria, which may play a role in designing effective agents for cancer prevention and therapy. These survival pathways may also have significance in understanding other human pathophysiological conditions including diabetes, cardiovascular, autoimmune, and neurodegenerative diseases.


Biochimica et Biophysica Acta | 2014

Neem components as potential agents for cancer prevention and treatment

Fang Hao; Sandeep Kumar; Neelu Yadav; Dhyan Chandra

Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment.


Mitochondrion | 2013

Resveratrol depletes mitochondrial DNA and inhibition of autophagy enhances resveratrol-induced caspase activation

Varun Vijay Prabhu; Pragya Srivastava; Neelu Yadav; Michael Amadori; Andrea Schneider; Athul Seshadri; Jason R. Pitarresi; Rachael Scott; Honghao Zhang; Shahriar Koochekpour; Raghu Gogada; Dhyan Chandra

We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response.


Cell Death and Disease | 2014

Transformations of the macromolecular landscape at mitochondria during DNA-damage-induced apoptotic cell death

Neelu Yadav; A Pliss; A Kuzmin; P Rapali; L Sun; P Prasad; Dhyan Chandra

Apoptosis is a dynamic process regulated by mitochondrion critical for cellular respiration and survival. Execution of apoptosis is mediated by multiple protein signaling events at mitochondria. Initiation and progression of apoptosis require numerous apoptogenic factors that are either released from or sequestered in mitochondria, which may transform the biomolecular makeup of the organelle. In this communication, using Raman microspectroscopy, we demonstrate that transformation in biomolecular composition of mitochondrion may be used as apoptosis marker in an individual cell. For the first time, we show that significant changes occur in the concentrations of RNA, DNA, protein, and lipid constituents of mitochondria during apoptosis. The structural analysis of proteins on mitochondria demonstrated a decrease in α-helix secondary structure content, and an increase in the levels of random coils and β-sheets on mitochondria. This may represent an additional hallmark of apoptosis. Strikingly, we observed nearly identical changes in macromolecular content of mitochondria both in the presence and absence of a key proapoptotic protein, Bax (Bcl-2-associated X protein). Increased DNA level in mitochondria corresponded with higher mitochondrial DNA (mtDNA), cellular reactive oxygen species (ROS), and mitochondrial ROS production. Upregulation of polymerase-γ (POLG), mitochondrial helicase Twinkle, and mitochondrial transcription factor A (Tfam) in response to DNA damage correlated with increased mtDNA and RNA synthesis. Elevated activity of oxidative phosphorylation complexes supports functional mitochondrial respiration during apoptosis. Thus, we define previously unknown dynamic correlation of macromolecular structure of mitochondria and apoptosis progression in the presence and absence of Bax protein. These findings open up a new approach for monitoring physiological status of cells by non invasive single-cell method.Cell Death and Disease (2014) 5, e1453; doi:10.1038/cddis.2014.405; published online 9 October 2014


Cell Death and Disease | 2015

Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

Neelu Yadav; Sandeep Kumar; Timothy Marlowe; Ajay K. Chaudhary; Rahul Kumar; Jianmin Wang; J O'Malley; P M Boland; S Jayanthi; T K S Kumar; Nagendra Yadava; Dhyan Chandra

Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.

Collaboration


Dive into the Neelu Yadav's collaboration.

Top Co-Authors

Avatar

Dhyan Chandra

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ajay K. Chaudhary

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sandeep Kumar

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Raghu Gogada

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Rahul Kumar

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Andrea Schneider

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jianmin Wang

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Hannelore V. Heemers

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jordan O'Malley

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Kristopher Attwood

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge