Neeraja M. Krishnan
Tata Institute of Fundamental Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Neeraja M. Krishnan.
BMC Genomics | 2012
Neeraja M. Krishnan; Swetansu Pattnaik; Prachi Jain; Prakhar Gaur; Rakshit Choudhary; Srividya Vaidyanathan; Sa Deepak; Arun K. Hariharan; Pg Bharath Krishna; Jayalakshmi Nair; Linu Varghese; Naveen K Valivarthi; Kunal Dhas; Krishna Ramaswamy; Binay Panda
BackgroundThe Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach.ResultsThe genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs.ConclusionsThis study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides.
BMC Genomics | 2008
Neeraja M. Krishnan; Hervé Seligmann; Basuthkar J. Rao
BackgroundSynonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems.ResultsWe found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite.ConclusionMrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K- strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of K-strategists, perhaps because domestication increases reproductive output.
PeerJ | 2013
Prachi Jain; Neeraja M. Krishnan; Binay Panda
Researchers interested in studying and constructing transcriptomes, especially for non-model species, face the conundrum of choosing from a number of available de novo and genome-guided assemblers. None of the popular assembly tools in use today achieve requisite sensitivity, specificity or recovery of full-length transcripts on their own. Here, we present a comprehensive comparative study of the performance of various assemblers. Additionally, we present an approach to combinatorially augment transciptome assembly by using both de novo and genome-guided tools. In our study, we obtained the best recovery and most full-length transcripts with Trinity and TopHat1-Cufflinks, respectively. The sensitivity of the assembly and isoform recovery was superior, without compromising much on the specificity, when transcripts from Trinity were augmented with those from TopHat1-Cufflinks.
PLOS ONE | 2012
Neeraja M. Krishnan; Prakhar Gaur; Rakshit Chaudhary; Arjun A. Rao; Binay Panda
Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect to matched normal tissue, in order to understand their association with the disease. We have devised an accurate, sensitive, and easy-to-use tool, COPS, COpy number using Paired Samples, for detecting SCNAs. We rigorously tested the performance of COPS using short sequence simulated reads at various sizes and coverage of SCNAs, read depths, read lengths and also with real tumor:normal paired samples. We found COPS to perform better in comparison to other known SCNA detection tools for all evaluated parameters, namely, sensitivity (detection of true positives), specificity (detection of false positives) and size accuracy. COPS performed well for sequencing reads of all lengths when used with most upstream read alignment tools. Additionally, by incorporating a downstream boundary segmentation detection tool, the accuracy of SCNA boundaries was further improved. Here, we report an accurate, sensitive and easy to use tool in detecting cancer-specific SCNAs using short-read sequence data. In addition to cancer, COPS can be used for any disease as long as sequence reads from both disease and normal samples from the same individual are available. An added boundary segmentation detection module makes COPS detected SCNA boundaries more specific for the samples studied. COPS is available at ftp://115.119.160.213 with username “cops” and password “cops”.
Biological Procedures Online | 2004
Neeraja M. Krishnan; Sameer Z. Raina; David D. Pollock
Substitution patterns among nucleotides are often assumed to be constant in phylogenetic analyses. Although variation in the average rate of substitution among sites is commonly accounted for, variation in the relative rates of specific types of substitution is not. Here, we review details of methodologies used for detecting and analyzing differences in substitution processes among predefined groups of sites. We describe how such analyses can be performed using existing phylogenetic tools, and discuss how new phylogenetic analysis tools we have recently developed can be used to provide more detailed and sensitive analyses, including study of the evolution of mutation and substitution processes. As an example we consider the mitochondrial genome, for which two types of transition deaminations (C⇒T and A⇒G) are strongly affected by single-strandedness during replication, resulting in a strand asymmetric mutation process. Since time spent single-stranded varies along the mitochondrial genome, their differential mutational response results in very different substitution patterns in different regions of the genome.
F1000Research | 2015
Neeraja M. Krishnan; Saurabh Gupta; Vinayak Palve; Linu Varghese; Swetansu Pattnaik; Prachi Jain; Costerwell Khyriem; Arun K. Hariharan; Kunal Dhas; Jayalakshmi Nair; Manisha Pareek; Venkatesh K Prasad; Gangotri Siddappa; Amritha Suresh; Vikram Kekatpure; Moni Abraham Kuriakose; Binay Panda
Oral tongue squamous cell carcinomas (OTSCC) are a homogeneous group of tumors characterized by aggressive behavior, early spread to lymph nodes and a higher rate of regional failure. Additionally, the incidence of OTSCC among younger population (<50yrs) is on the rise; many of whom lack the typical associated risk factors of alcohol and/or tobacco exposure. We present data on single nucleotide variations (SNVs), indels, regions with loss of heterozygosity (LOH), and copy number variations (CNVs) from fifty-paired oral tongue primary tumors and link the significant somatic variants with clinical parameters, epidemiological factors including human papilloma virus (HPV) infection and tumor recurrence. Apart from the frequent somatic variants harbored in TP53, CASP8, RASA1, NOTCH and CDKN2A genes, significant amplifications and/or deletions were detected in chromosomes 6-9, and 11 in the tumors. Variants in CASP8 and CDKN2A were mutually exclusive. CDKN2A, PIK3CA, RASA1 and DMD variants were exclusively linked to smoking, chewing, HPV infection and tumor stage. We also performed a whole-genome gene expression study that identified matrix metalloproteases to be highly expressed in tumors and linked pathways involving arachidonic acid and NF-k-B to habits and distant metastasis, respectively. Functional knockdown studies in cell lines demonstrated the role of CASP8 in a HPV-negative OTSCC cell line. Finally, we identified a 38-gene minimal signature that predicts tumor recurrence using an ensemble machine-learning method. Taken together, this study links molecular signatures to various clinical and epidemiological factors in a homogeneous tumor population with a relatively high HPV prevalence.
Molecular Cancer Research | 2016
Neeraja M. Krishnan; Kunal Dhas; Jayalakshmi Nair; Vinayak Palve; Jamir Bagwan; Gangotri Siddappa; Amritha Suresh; Vikram Kekatpure; Moni Abraham Kuriakose; Binay Panda
Oral tongue squamous cell carcinomas (OTSCC) are a homogenous group of aggressive tumors in the head and neck region that spread early to lymph nodes and have a higher incidence of regional failure. In addition, there is a rising incidence of oral tongue cancer in younger populations. Studies on functional DNA methylation changes linked with altered gene expression are critical for understanding the mechanisms underlying tumor development and metastasis. Such studies also provide important insight into biomarkers linked with viral infection, tumor metastasis, and patient survival in OTSCC. Therefore, we performed genome-wide methylation analysis of tumors (N = 52) and correlated altered methylation with differential gene expression. The minimal tumor-specific DNA 5-methylcytosine signature identified genes near 16 different differentially methylated regions, which were validated using genomic data from The Cancer Genome Atlas cohort. In our cohort, hypermethylation of MIR10B was significantly associated with the differential expression of its target genes NR4A3 and BCL2L11 (P = 0.0125 and P = 0.014, respectively), which was inversely correlated with disease-free survival (P = 9E−15 and P = 2E−15, respectively) in patients. Finally, differential methylation in FUT3, TRIM5, TSPAN7, MAP3K8, RPS6KA2, SLC9A9, and NPAS3 genes was found to be predictive of certain clinical and epidemiologic parameters. Implications: This study reveals a functional minimal methylation profile in oral tongue tumors with associated risk habits, clinical, and epidemiologic outcomes. In addition, NR4A3 downregulation and correlation with patient survival suggests a potential target for therapeutic intervention in oral tongue tumors. Data from the current study are deposited in the NCBI Geo database (accession number GSE75540). Mol Cancer Res; 14(9); 805–19. ©2016 AACR.
BMC Biochemistry | 2009
Kamakshi Balakrishnan; Neeraja M. Krishnan; Anagha Kulkarni; Basuthkar J. Rao
BackgroundHuman Rad51 (RAD51), analogous to its bacterial homolog, RecA, binds and unwinds double stranded DNA (dsDNA) in the presence of certain nucleotide cofactors. ATP hydrolysis is not required for this process, because even ATP non hydrolysable analogs like AMP-PNP and ATPγS, support DNA unwinding. Even ADP, the product of ATP hydrolysis, feebly supports DNA unwinding.ResultsWe find that human Rad52 (RAD52) stimulates RAD51 mediated DNA unwinding in the presence of all Adenine nucleotide cofactors, (except in AMP and no nucleotide conditions that intrinsically fail to support unwinding reaction) while enhancing aggregation of RAD51-dsDNA complexes in parallel. Interestingly, salt at low concentration can substitute the role of RAD52, in facilitating aggregation of RAD51-dsDNA complexes, that concomitantly also leads to better unwinding.ConclusionRAD52 itself being a highly aggregated protein perhaps acts as scaffold to bring together RAD51 and DNA molecules into large co-aggregates of RAD52-RAD51-DNA complexes to promote RAD51 mediated DNA unwinding reaction, when appropriate nucleotide cofactors are available, presumably through macromolecular crowding effects. Our work highlights the functional link between aggregation of protein-DNA complexes and DNA unwinding in RAD51 system.
G3: Genes, Genomes, Genetics | 2016
Neeraja M. Krishnan; Prachi Jain; Saurabh Gupta; Arun K. Hariharan; Binay Panda
Neem (Azadirachta indica A. Juss.), an evergreen tree of the Meliaceae family, is known for its medicinal, cosmetic, pesticidal and insecticidal properties. We had previously sequenced and published the draft genome of a neem plant, using mainly short read sequencing data. In this report, we present an improved genome assembly generated using additional short reads from Illumina and long reads from Pacific Biosciences SMRT sequencer. We assembled short reads and error-corrected long reads using Platanus, an assembler designed to perform well for heterozygous genomes. The updated genome assembly (v2.0) yielded 3- and 3.5-fold increase in N50 and N75, respectively; 2.6-fold decrease in the total number of scaffolds; 1.25-fold increase in the number of valid transcriptome alignments; 13.4-fold less misassembly and 1.85-fold increase in the percentage repeat, over the earlier assembly (v1.0). The current assembly also maps better to the genes known to be involved in the terpenoid biosynthesis pathway. Together, the data represent an improved assembly of the A. indica genome.
bioRxiv | 2016
Vinayak Palve; Jamir Bagwan; Neeraja M. Krishnan; Manisha Pareek; Udita Chandola; Amritha Suresh; Gangotri Siddappa; Bonney Lee James; Vikram Kekatpure; Moni Abraham Kuriakose; Binay Panda
Human papillomavirus (HPV) is a known risk factor for certain head and neck cancers. Tumors of head and neck region are heterogeneous in nature with different incidences, mortalities and prognosis for different subsites. Unlike oropharynx, where data favors inclusion of HPV status in disease management, role of HPV in oral cavity squamous cell carcinoma (OSCC) is not well understood. The prevalence of HPV in OSCC, although considered lower than oropharynx, vary greatly based on the choice of HPV assay and patient geography. Additionally, data on HPV +ve OSCC is scarce and there is less agreement on HPV being a good prognostic factor in OSCC. Here with 153 OSCC patients, using multiple analytes and assays, we show that a high prevalence (33-58%) of HPV16/18 DNA did not correlate with an equally high prevalence of transcriptionally active viral genomes (E6/E7 RNA prevalence 15%) in tumors. Only 6% of the tumors showed the presence of both HPV DNA and HPV16/18 E6/E7 RNA and none with both p16 and HPV RNA. Most tumors with relatively high-copy HPV DNA and/or HPV E6/E7 mRMA, but not with HPV DNA alone (irrespective of copy number), were wild type for TP53 and CASP8 genes. In our study, p16 protein, HPV DNA and E6/E7 RNA, either alone or in combinations, did not correlate with patient survival. Using genome-wide methylation data, 9 HPV-associated genes stratified the HPV +ve from the HPV −ve tumor groups with high confidence (p<0.008) when relatively high-copy number of HPV DNA and/or HPV E6/E7 RNA were considered to define HPV positivity and not HPV DNA alone irrespective of their copy number (p<0.2). Taken together, we conclude that tests measuring HPV DNA alone without viral load and/or viral RNA may not be a true measures of HPV infection in oral cavity tumors and therefore are not informative. Conflict of interests None of the authors declare any conflicts of interest.