Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neha S. Gandhi is active.

Publication


Featured researches published by Neha S. Gandhi.


Chemical Biology & Drug Design | 2008

The Structure of Glycosaminoglycans and their Interactions with Proteins

Neha S. Gandhi; Ricardo L. Mancera

Glycosaminoglycans (GAGs) are important complex carbohydrates that participate in many biological processes through the regulation of their various protein partners. Biochemical, structural biology and molecular modelling approaches have assisted in understanding the molecular basis of such interactions, creating an opportunity to capitalize on the large structural diversity of GAGs in the discovery of new drugs. The complexity of GAG–protein interactions is in part due to the conformational flexibility and underlying sulphation patterns of GAGs, the role of metal ions and the effect of pH on the affinity of binding. Current understanding of the structure of GAGs and their interactions with proteins is here reviewed: the basic structures and functions of GAGs and their proteoglycans, their clinical significance, the three‐dimensional features of GAGs, their interactions with proteins and the molecular modelling of heparin binding sites and GAG–protein interactions. This review focuses on some key aspects of GAG structure–function relationships using classical examples that illustrate the specificity of GAG–protein interactions, such as growth factors, anti‐thrombin, cytokines and cell adhesion molecules. New approaches to the development of GAG mimetics as possible new glycotherapeutics are also briefly covered.


PLOS ONE | 2008

A comparative structural bioinformatics analysis of the insulin receptor family ectodomain based on phylogenetic information

Miguel E. Rentería; Neha S. Gandhi; Pablo Vinuesa; Erik Helmerhorst; Ricardo L. Mancera

The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.


Biochimica et Biophysica Acta | 2012

Prediction of heparin binding sites in bone morphogenetic proteins (BMPs)

Neha S. Gandhi; Ricardo L. Mancera

Heparin is a glycosaminoglycan known to bind bone morphogenetic proteins (BMPs) and the growth and differentiation factors (GDFs) and has strong and variable effects on BMP osteogenic activity. In this paper we report our predictions of the likely heparin binding sites for BMP-2 and 14. The N-terminal sequences upstream of TGF-β-type cysteine-knot domains in BMP-2, 7 and 14 contain the basic residues arginine and lysine, which are key components of the heparin/HS-binding sites, with these residues being highly non-conserved. Importantly, evolutionary conserved surfaces on the beta sheets are required for interactions with receptors and antagonists. Furthermore, BMP-2 has electropositive surfaces on two sides compared to BMP-7 and BMP-14. Molecular docking simulations suggest the presence of high and low affinity binding sites in dimeric BMP-2. Histidines were found to play a role in the interactions of BMP-2 with heparin; however, a pK(a) analysis suggests that histidines are likely not protonated. This is indicative that interactions of BMP-2 with heparin do not require acidic pH. Taken together, non-conserved amino acid residues in the N-terminus and residues protruding from the beta sheet (not overlapping with the receptor binding sites and the dimeric interface) and not C-terminal are found to be important for heparin-BMP interactions.


Glycobiology | 2012

Computational analyses of the catalytic and heparin binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-D-glucuronidase (heparanase)

Neha S. Gandhi; Craig Freeman; Christopher R. Parish; Ricardo L. Mancera

Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement membrane, releasing heparin/heparan sulfate oligosaccharides of appreciable size. This in turn causes the release of growth factors, which accelerate tumor growth and metastasis. Heparanase has two glycosaminoglycan-binding domains; however, no three-dimensional structure information is available for human heparanase that can provide insights into how the two domains interact to degrade heparin fragments. We have constructed a new homology model of heparanase that takes into account the most recent structural and bioinformatics data available. Heparin analogs and glycosaminoglycan mimetics were computationally docked into the active site with energetically stable ring conformations and their interaction energies were compared. The resulting docked structures were used to propose a model for substrates and conformer selectivity based on the dimensions of the active site. The docking of substrates and inhibitors indicates the existence of a large binding site extending at least two saccharide units beyond the cleavage site (toward the nonreducing end) and at least three saccharides toward the reducing end (toward heparin-binding site 2). The docking of substrates suggests that heparanase recognizes the N-sulfated and O-sulfated glucosamines at subsite +1 and glucuronic acid at the cleavage site, whereas in the absence of 6-O-sulfation in glucosamine, glucuronic acid is docked at subsite +2. These findings will help us to focus on the rational design of heparanase-inhibiting molecules for anticancer drug development by targeting the two heparin/heparan sulfate recognition domains.


Glycobiology | 2009

Free energy calculations of glycosaminoglycan-protein interactions

Neha S. Gandhi; Ricardo L. Mancera

Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.


Biochemistry | 2008

Platelet endothelial cell adhesion molecule 1 (PECAM-1) and its interactions with glycosaminoglycans: 1. Molecular modeling studies.

Neha S. Gandhi; Deirdre R. Coombe; Ricardo L. Mancera

Platelet endothelial cell adhesion molecule 1 (PECAM-1) has many functions, including its roles in leukocyte extravasation as part of the inflammatory response and in the maintenance of vascular integrity through its contribution to endothelial cell-cell adhesion. PECAM-1 has been shown to mediate cell-cell adhesion through homophilic binding events that involve interactions between domain 1 of PECAM-1 molecules on adjacent cells. However, various heterophilic ligands of PECAM-1 have also been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this study. The three-dimensional structure of the extracellular immunoglobulin (Ig) domains of PECAM-1 were constructed using homology modeling and threading methods. Potential heparin/heparan sulfate-binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate-binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein-binding specificity and selectivity. The modeling has predicted two regions in PECAM-1 that appear to bind heparin oligosaccharides. A high-affinity binding site was located in Ig domains 2 and 3, and evidence for a low-affinity site in Ig domains 5 and 6 was obtained. These GAG-binding regions were distinct from regions involved in PECAM-1 homophilic interactions.


Carbohydrate Research | 2010

Can current force fields reproduce ring puckering in 2-O-sulfo-α-L-iduronic acid? A molecular dynamics simulation study

Neha S. Gandhi; Ricardo L. Mancera

The monosaccharide 2-O-sulfo-alpha-L-iduronic acid (IdoA2S) is one of the major components of glycosaminoglycans. The ability of molecular mechanics force fields to reproduce ring-puckering conformational equilibrium is important for the successful prediction of the free energies of interaction of these carbohydrates with proteins. Here we report unconstrained molecular dynamics simulations of IdoA2S monosaccharide that were carried out to investigate the ability of commonly used force fields to reproduce its ring conformational flexibility in aqueous solution. In particular, the distribution of ring conformer populations of IdoA2S was determined. The GROMOS96 force field with the SPC/E water potential can predict successfully the dominant skew-boat to chair conformational transition of the IdoA2S monosaccharide in aqueous solution. On the other hand, the GLYCAM06 force field with the TIP3P water potential sampled transitional conformations between the boat and chair forms. Simulations using the GROMOS96 force field showed no pseudorotational equilibrium fluctuations and hence no inter-conversion between the boat and twist boat ring conformers. Calculations of theoretical proton NMR coupling constants showed that the GROMOS96 force field can predict the skew-boat to chair conformational ratio in good agreement with the experiment, whereas GLYCAM06 shows worse agreement. The omega rotamer distribution about the C5-C6 bond was predicted by both force fields to have torsions around 10 degrees , 190 degrees , and 360 degrees .


Journal of Chemical Information and Modeling | 2011

Molecular dynamics simulations of CXCL-8 and its interactions with a receptor peptide, heparin fragments, and sulfated linked cyclitols.

Neha S. Gandhi; Ricardo L. Mancera

CXCL-8 (Interleukin 8) is a CXC chemokine with a central role in the human immune response. We have undertaken extensive in silico analyses to elucidate the interactions of CXCL-8 with its various binding partners, which are crucial for its biological function. Sequence and structure analyses showed that residues in the thirdq β-sheet and basic residues in the heparin binding site are highly variable, while residues in the second β-sheet are highly conserved. Molecular dynamics simulations in aqueous solution of dimeric CXCL-8 have been performed with starting geometries from both X-ray and NMR structures showed shearing movements between the two antiparallel C-terminal helices. Dynamic conservation analyses of these simulations agreed with experimental data indicating that structural differences between the two structures at quaternary level arise from changes in the secondary structure of the N-terminal loop, the 3(10)-helix, the 30s, 40s, and 50s loops and the third β-sheet, resulting in a different interhelical separation. Nevertheless, the observation of these different states indicates that CXCL-8 has the potential to undergo conformational changes, and it seems likely that this feature is relevant to the mode of binding of glycosaminoglycan (GAG) mimetics such as cyclitols. Simulations of the receptor peptide fragment-CXCL-8 complex identified several specific interactions of the receptor peptide with CXCL-8 that could be exploited in the structure-based design of competitive peptides and nonpeptidic molecules targeting CXCL-8 for combating inflammatory diseases. Simulations of the CXCL-8 dimer complexed with a 24-mer heparin fragment and of the CXCL-8-receptor peptide complex revealed that Arg60, Lys64, and Arg68 in the dimer bind to cyclitols in a horseshoe pattern, defining a region which is spatially distinct from the receptor binding site. There appears to be an optimum number of sulfates and an optimum length of alkyl spacers required for the interaction of cyclitol inhibitors with the dimeric form of CXCL-8. Calculation of the binding affinities of cyclitol inhibitors reflected satisfactorily the ranking of experimentally determined inhibitory potencies. The findings of these molecular modeling studies will help in the search for inhibitors which can modulate various CXCL-8 biological activities and serve as an excellent model system to study CXC-inhibitor interactions.


Biochemistry | 2008

Platelet endothelial cell adhesion molecule 1 (PECAM-1) and its interactions with glycosaminoglycans: 2. Biochemical analyses

Deirdre R. Coombe; Sandra M. Stevenson; Beverley F. Kinnear; Neha S. Gandhi; Ricardo L. Mancera; Ronald Ian William Osmond; Warren C. Kett

Platelet endothelial cell adhesion molecule 1 (PECAM-1) (CD31), a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules with six Ig-like domains, has a range of functions, notably its contributions to leukocyte extravasation during inflammation and in maintaining vascular endothelial integrity. Although PECAM-1 is known to mediate cell adhesion by homophilic binding via domain 1, a number of PECAM-1 heterophilic ligands have been proposed. Here, the possibility that heparin and heparan sulfate (HS) are ligands for PECAM-1 was reinvestigated. The extracellular domain of PECAM-1 was expressed first as a fusion protein with the Fc region of human IgG1 fused to domain 6 and second with an N-terminal Flag tag on domain 1 (Flag-PECAM-1). Both proteins bound heparin immobilized on a biosensor chip in surface plasmon resonance (SPR) binding experiments. Binding was pH-sensitive but is easily measured at slightly acidic pH. A series of PECAM-1 domain deletions, prepared in both expression systems, were tested for heparin binding. This revealed that the main heparin-binding site required both domains 2 and 3. Flag-PECAM-1 and a Flag protein containing domains 1-3 bound HS on melanoma cell surfaces, but a Flag protein containing domains 1-2 did not. Heparin oligosaccharides inhibited Flag-PECAM-1 from binding immobilized heparin, with certain structures having greater inhibitory activity than others. Molecular modeling similarly identified the junction of domains 2 and 3 as the heparin-binding site and further revealed the importance of the iduronic acid conformation for binding. PECAM-1 does bind heparin/HS but by a site that is distinct from that required for homophilic binding.


Journal of Molecular Graphics & Modelling | 2012

Molecular modeling of Bt Cry1Ac (DI–DII)–ASAL (Allium sativum lectin)–fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta

Sunita Tajne; Ramadevi Sanam; Rambabu Gundla; Neha S. Gandhi; Ricardo L. Mancera; Dayakar Boddupally; Dashavantha Reddy Vudem; Venkateswara Rao Khareedu

Genetic engineering of Bacillus thuringiensis (Bt) Cry proteins has resulted in the synthesis of various novel toxin proteins with enhanced insecticidal activity and specificity towards different insect pests. In this study, a fusion protein consisting of the DI-DII domains of Cry1Ac and garlic lectin (ASAL) has been designed in silico by replacing the DIII domain of Cry1Ac with ASAL. The binding interface between the DI-DII domains of Cry1Ac and lectin has been identified using protein-protein docking studies. Free energy of binding calculations and interaction profiles between the Cry1Ac and lectin domains confirmed the stability of fusion protein. A total of 18 hydrogen bonds was observed in the DI-DII-lectin fusion protein compared to 11 hydrogen bonds in the Cry1Ac (DI-DII-DIII) protein. Molecular mechanics/Poisson-Boltzmann (generalized-Born) surface area [MM/PB (GB) SA] methods were used for predicting free energy of interactions of the fusion proteins. Protein-protein docking studies based on the number of hydrogen bonds, hydrophobic interactions, aromatic-aromatic, aromatic-sulphur, cation-pi interactions and binding energy of Cry1Ac/fusion proteins with the aminopeptidase N (APN) of Manduca sexta rationalised the higher binding affinity of the fusion protein with the APN receptor compared to that of the Cry1Ac-APN complex, as predicted by ZDOCK, Rosetta and ClusPro analysis. The molecular binding interface between the fusion protein and the APN receptor is well packed, analogously to that of the Cry1Ac-APN complex. These findings offer scope for the design and development of customized fusion molecules for improved pest management in crop plants.

Collaboration


Dive into the Neha S. Gandhi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Lippens

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

Mukul R. Jain

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Burrage

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ming Tang

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

YuanTong Gu

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Isabelle Landrieu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Zhili Zuo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Braj B. Lohray

Dr. Reddy's Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge