Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil A. Bradbury is active.

Publication


Featured researches published by Neil A. Bradbury.


Molecular Biology of the Cell | 2009

Rab11b Regulates the Apical Recycling of the Cystic Fibrosis Transmembrane Conductance Regulator in Polarized Intestinal Epithelial Cells

Mark R. Silvis; Carol A. Bertrand; Nadia Ameen; Franca Golin-Bisello; Michael B. Butterworth; Raymond A. Frizzell; Neil A. Bradbury

The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, DeltaF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells.


American Journal of Physiology-cell Physiology | 2014

Do you know the sex of your cells

Kalpit Shah; Charles E. McCORMACK; Neil A. Bradbury

Do you know the sex of your cells? Not a question that is frequently heard around the lab bench, yet thanks to recent research is probably one that should be asked. It is self-evident that cervical epithelial cells would be derived from female tissue and prostate cells from a male subject (exemplified by HeLa and LnCaP, respectively), yet beyond these obvious examples, it would be true to say that the sex of cell lines derived from non-reproductive tissue, such as lung, intestine, kidney, for example, is given minimal if any thought. After all, what possible impact could the presence of a Y chromosome have on the biochemistry and cell biology of tissues such as the exocrine pancreatic acini? Intriguingly, recent evidence has suggested that far from being irrelevant, genes expressed on the sex chromosomes can have a marked impact on the biology of such diverse tissues as neurons and renal cells. It is also policy of AJP-Cell Physiology that the source of all cells utilized (species, sex, etc.) should be clearly indicated when submitting an article for publication, an instruction that is rarely followed (http://www.the-aps.org/mm/Publications/Info-For-Authors/Composition). In this review we discuss recent data arguing that the sex of cells being used in experiments can impact the cells biology, and we provide a table outlining the sex of cell lines that have appeared in AJP-Cell Physiology over the past decade.


Cell Death and Disease | 2014

Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation

H Huang; Kalpit Shah; Neil A. Bradbury; Chi Li; Carl W. White

Mcl-1 is an antiapoptotic member of the Bcl-2 family frequently upregulated in non-small cell lung carcinoma (NSCLC). We now report the physiological significance of an interaction between Mcl-1 and the mitochondrial outer membrane-localized voltage-dependent anion channel (VDAC) in NSCLC cell lines. Mcl-1 bound with high affinity to VDAC1 and 3 isoforms but only very weakly to VDAC2 and binding was disrupted by peptides based on the VDAC1 sequence. In A549 cells, reducing Mcl-1 expression levels or application of VDAC-based peptides limited Ca2+ uptake into the mitochondrial matrix, the consequence of which was to inhibit reactive oxygen species (ROS) generation. In A549, H1299 and H460 cells, both Mcl-1 knockdown and VDAC-based peptides attenuated cell migration without affecting cell proliferation. Migration was rescued in Mcl-1 knockdown cells by experimentally restoring ROS levels, consistent with a model in which ROS production drives increased migration. These data suggest that an interaction between Mcl-1 and VDAC promotes lung cancer cell migration by a mechanism that involves Ca2+-dependent ROS production.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1999

Characterization of the internalization pathways for the cystic fibrosis transmembrane conductance regulator

Neil A. Bradbury; John A. Clark; Simon C. Watkins; Christopher C. Widnell; H. Skipper Smith; Robert J. Bridges

Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel give rise to the most common lethal genetic disease of Caucasian populations, CF. Although the function of CFTR is primarily related to the regulation of apical membrane chloride permeability, biochemical, immunocytochemical, and functional studies indicate that CFTR is also present in endosomal and trans Golgi compartments. The molecular pathways by which CFTR is internalized into intracellular compartments are not fully understood. To define the pathways for CFTR internalization, we investigated the association of CFTR with two specialized domains of the plasma membrane, clathrin-coated pits and caveolae. Internalization of CFTR was monitored after cell surface biotinylation and quantitation of cell surface CFTR levels after elution of cell lysates from a monomeric avidin column. Cell surface levels of CFTR were determined after disruption of caveolae or clathrin-coated vesicle formation. Biochemical assays revealed that disrupting the formation of clathrin-coated vesicles inhibited the internalization of CFTR from the plasma membrane, resulting in a threefold increase in the steady-state levels of cell surface CFTR. In contrast, the levels of cell surface CFTR after disruption of caveolae were not different from those in control cells. In addition, although our studies show the presence of caveolin at the apical membrane domain of human airway epithelial cells, we were unable to detect CFTR in purified caveolae. These results suggest that CFTR is constitutively internalized from the apical plasma membrane via clathrin-coated pits and that CFTR is excluded from caveolae.


Journal of Biological Chemistry | 2003

A Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Generates a Novel Internalization Sequence and Enhances Endocytic Rates

Mark Silvis; John A. Picciano; Carol A. Bertrand; Kelly M. Weixel; Robert J. Bridges; Neil A. Bradbury

Cystic fibrosis is a common lethal genetic disease among Caucasians. The cystic fibrosis gene encodes a cyclic adenosine monophosphate-activated chloride channel (cystic fibrosis transmembrane conductance regulator (CFTR)) that mediates electrolyte transport across the luminal surfaces of a variety of epithelial cells. Mutations in CFTR fall into two broad categories; those that affect protein biosynthesis/stability and traffic to the cell surface and those that cause altered channel kinetics in proteins that reach the cell surface. Here we report a novel mechanism by which mutations in CFTR give rise to disease. N287Y, a mutation within an intracellular loop of CFTR, increases channel endocytosis from the cell surface without affecting either biosynthesis or channel gating. The sole consequence of this novel mutation is to generate a novel tyrosine-based endocytic sequence within an intracellular loop in CFTR leading to increased removal from the cell surface and a reduction in the steady-state level of CFTR at the cell surface.


American Journal of Therapeutics | 2008

Hpv16 and Bpv1 Infection Can Be Blocked by the Dynamin Inhibitor Dynasore

Cynthia Abban; Neil A. Bradbury; Patricio I. Meneses

The initial entry of papillomaviruses into their target cells has been shown to occur by clathrin-mediated endocytosis and caveolae-mediated endocytosis. These mechanisms entail the formation of nascent-coated vesicles at the plasma membrane. Such coated vesicles, clathrin or caveolin, form and pinch-off in a controlled mechanism that involves several proteins including dynamin. Dynamin is a GTPase that forms a dynamin ring at the stem connecting the nascent vesicle to the plasma membrane. In a still not fully characterized mechanism, dynamins contraction and twisting results in the scission of the vesicle. In an effort to better characterize the role and molecular mechanisms of dynamins function, researchers have identified dynasore, a dynamin GTPase inhibitor that prevents the scission of dynamin-dependent endocytic vesicles. Here, we have tested if infection by pseudovirus corresponding to the oncogenic human papillomavirus type 16 and bovine papillomavirus type 1 can be blocked by dynasore. We present data demonstrating that dynasore can block infection of human papillomavirus type 16 and bovine papillomavirus type 1 pseudovirions in a dose- and time-dependent manner with equal efficiency. Presently, there is no available therapy that can block infection by a wide range of papillomavirus regardless of species or genotypes. Targeting dynamin may lead to the rational design of drug able to prevent infection by papillomaviruses, and by other infectious agents dependent on this protein for initial internalization into target cells. Whether such an approach will prove successful needs further investigation.


Biochemical and Biophysical Research Communications | 1992

Endocytosis is regulated by protein kinase A, but not protein kinase C in a secretory epithelial cell line.

Neil A. Bradbury; Robert J. Bridges

Endocytosis in the chloride secreting epithelial cell line T84 was monitored by uptake of the fluid-phase markers FITC-dextran and horseradish peroxidase (HRP). Uptake of marker was inhibited by incubation of cells at 4 degrees C, consistent with an endocytic uptake. Although activation of the cAMP-dependent second messenger pathway has been shown to stimulate exocytosis in this cell line, it caused a 63% reduction in endocytosis as measured by uptake of fluid-phase markers. In contrast, the presence of the protein kinase C activator phorbol-myristate acetate (PMA) caused no significant reduction in the level of endocytosis compared to control, nor did it reverse the inhibitory effect of PKA activation. The data thus suggest that endocytosis in T84 cells is regulated through activation of protein kinase A, but not through activation of protein kinase C.


Journal of Cellular Physiology | 2000

Protein kinase-A–mediated secretion of mucin from human colonic epithelial cells

Neil A. Bradbury

Both Ca2+‐ and cAMP‐mediated second messenger cascades acutely regulate mucin secretion from human colonic epithelial cells. To better understand the cAMP‐dependent regulation of mucin secretion we have characterized the complement of cAMP‐dependent protein kinase (PKA) isoforms in mucus‐secreting T84 cells, and determined which of these isoforms is responsible for agonist‐stimulated mucin secretion. Our results show the presence of both type I and type II PKA in cells that also contain large mucin granules. Forskolin caused a rapid and sustained increase in PKA activity that reached a maximum 5–10 min following its addition. Secretion of mucin was detected 15 min following exposure to forskolin, and continued to increase for a further 15 min before reaching a plateau. Mucin secretion was also measured in the presence of combinations of site‐selective cAMP analog pairs, which preferentially activate either type I or type II PKA. Similar levels of mucin secretion were observed for both type I and type II PKA‐selective analog pairs. Subsequent addition of forskolin was unable to further increase mucin secretion. Thus, activation of either type I or type II PKA is able to maximally stimulate secretion of mucins from T84 human colonic epithelial cells. J. Cell. Physiol. 185:408–415, 2000.


Journal of Molecular Biology | 2015

Synonymous Codon Usage Affects the Expression of Wild Type and F508del CFTR

Kalpit Shah; Yi Cheng; Brian Hahn; Robert J. Bridges; Neil A. Bradbury; David M. Mueller

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel composed of 1480 amino acids. The major mutation responsible for cystic fibrosis results in loss of amino acid residue, F508 (F508del). Loss of F508 in CFTR alters the folding pathway resulting in endoplasmic-reticulum-associated degradation. This study investigates the role of synonymous codon in the expression of CFTR and CFTR F508del in human HEK293 cells. DNA encoding the open reading frame (ORF) for CFTR containing synonymous codon replacements was expressed using a heterologous vector integrated into the genome. The results indicate that the codon usage greatly affects the expression of CFTR. While the promoter strength driving expression of the ORFs was largely unchanged and the mRNA half-lives were unchanged, the steady-state levels of the mRNA varied by as much as 30-fold. Experiments support that this apparent inconsistency is attributed to nonsense mediated decay independent of exon junction complex. The ratio of CFTR/mRNA indicates that mRNA containing native codons was more efficient in expressing mature CFTR as compared to mRNA containing synonymous high-expression codons. However, when F508del CFTR was expressed after codon optimization, a greater percentage of the protein escaped endoplasmic-reticulum-associated degradation resulting in considerable levels of mature F508del CFTR on the plasma membrane, which showed channel activity. These results indicate that codon usage has an effect on mRNA levels and protein expression, for CFTR, and likely on chaperone-assisted folding pathway, for F508del CFTR.


American Journal of Physiology-cell Physiology | 1998

Characterization of PKA isoforms and kinase-dependent activation of chloride secretion in T84 cells

Ashvani K. Singh; K. Taskén; W. Walker; Raymond A. Frizzell; Simon C. Watkins; Robert J. Bridges; Neil A. Bradbury

Chloride exit across the apical membranes of secretory epithelial cells is acutely regulated by the cAMP-mediated second messenger cascade. To better understand the regulation of transepithelial chloride secretion, we have characterized the complement of cAMP-dependent protein kinase (PKA) isoforms present in the human colonic epithelial cell line T84. Our results show that both type I and type II PKA are present in T84 cells. Immunoprecipitation of 8-azido-[32P]cAMP-labeled cell lysates revealed that the major regulatory subunits of PKA were RIalpha and RIIalpha. In addition, immunogold electron microscopy showed that RIIalpha labeling was found on membranes of the trans Golgi network and on apical plasma membrane. In contrast, RIalpha was randomly distributed throughout the cytoplasm, with no discernible membrane association. Northern blot analysis of T84 RNA revealed that Calpha was the predominantly expressed catalytic subunit. Short-circuit current measurements were performed in the presence of combinations of site-selective cAMP analog pairs to preferentially activate either PKA type I or PKA type II in intact T84 cell monolayers. Maximal levels of chloride secretion (approximately 100 microA/cm2) were observed for both type I and type II PKA-selective analog pairs. Subsequent addition of forskolin was unable to further increase chloride secretion. Thus activation of either type I or type II PKA is able to maximally stimulate chloride secretion in T84 colonic epithelial cells.Chloride exit across the apical membranes of secretory epithelial cells is acutely regulated by the cAMP-mediated second messenger cascade. To better understand the regulation of transepithelial chloride secretion, we have characterized the complement of cAMP-dependent protein kinase (PKA) isoforms present in the human colonic epithelial cell line T84. Our results show that both type I and type II PKA are present in T84 cells. Immunoprecipitation of 8-azido-[32P]cAMP-labeled cell lysates revealed that the major regulatory subunits of PKA were RIα and RIIα. In addition, immunogold electron microscopy showed that RIIα labeling was found on membranes of the trans Golgi network and on apical plasma membrane. In contrast, RIα was randomly distributed throughout the cytoplasm, with no discernible membrane association. Northern blot analysis of T84 RNA revealed that Cα was the predominantly expressed catalytic subunit. Short-circuit current measurements were performed in the presence of combinations of site-selective cAMP analog pairs to preferentially activate either PKA type I or PKA type II in intact T84 cell monolayers. Maximal levels of chloride secretion (∼100 μA/cm2) were observed for both type I and type II PKA-selective analog pairs. Subsequent addition of forskolin was unable to further increase chloride secretion. Thus activation of either type I or type II PKA is able to maximally stimulate chloride secretion in T84 colonic epithelial cells.

Collaboration


Dive into the Neil A. Bradbury's collaboration.

Top Co-Authors

Avatar

Kalpit Shah

Rosalind Franklin University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

Robert J. Bridges

Rosalind Franklin University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isha Dey

Rosalind Franklin University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

Mark Silvis

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Nadia Ameen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl W. White

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge