Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil A. Hanchard is active.

Publication


Featured researches published by Neil A. Hanchard.


American Journal of Human Genetics | 2004

Evidence for Extensive Transmission Distortion in the Human Genome

Sebastian Zöllner; Xiaoquan Wen; Neil A. Hanchard; Mark A. Herbert; Carole Ober; Jonathan K. Pritchard

It is a basic principle of genetics that each chromosome is transmitted from parent to offspring with a probability that is given by Mendels laws. However, several known biological processes lead to skewed transmission probabilities among surviving offspring and, therefore, to excess genetic sharing among relatives. Examples include in utero selection against deleterious mutations, meiotic drive, and maternal-fetal incompatibility. Although these processes affect our basic understanding of inheritance, little is known about their overall impact in humans or other mammals. In this study, we examined genome screen data from 148 nuclear families, collected without reference to phenotype, to look for departures from Mendelian transmission proportions. Using single-point and multipoint linkage analysis, we detected a modest but significant genomewide shift towards excess genetic sharing among siblings (average sharing of 50.43% for the autosomes; P=.009). Our calculations indicate that many loci with skewed transmission are required to produce a genomewide shift of this magnitude. Since transmission distortion loci are subject to strong selection, this raises interesting questions about the evolutionary forces that keep them polymorphic. Finally, our results also have implications for mapping disease genes and for the genetics of fertility.


PLOS ONE | 2009

Genetic Variation on Chromosome 6 Influences F Cell Levels in Healthy Individuals of African Descent and HbF Levels in Sickle Cell Patients

Lisa E. Creary; Pinar Ulug; Stephan Menzel; Colin A. McKenzie; Neil A. Hanchard; Veronica Taylor; Martin Farrall; Terrence Forrester; Swee Lay Thein

Fetal haemoglobin (HbF) is a major ameliorating factor in sickle cell disease. We investigated if a quantitative trait locus on chromosome 6q23 was significantly associated with HbF and F cell levels in individuals of African descent. Single nucleotide polymorphisms (SNPs) in a 24-kb intergenic region, 33-kb upstream of the HBS1L gene and 80-kb upstream of the MYB gene, were typed in 177 healthy Afro-Caribbean subjects (AC) of approximately 7% European admixture, 631 healthy Afro-Germans (AG, a group of African and German descendents located in rural Jamaica with about 20% European admixture), 87 West African and Afro-Caribbean individuals with sickle cell anaemia (HbSS), as well as 75 Northern Europeans, which served as a contrasting population. Association with a tag SNP for the locus was detected in all four groups (AC, P = 0.005, AG, P = 0.002, HbSS patients, P = 0.019, Europeans, P = 1.5×10−7). The association signal varied across the interval in the African-descended groups, while it is more uniform in Europeans. The 6q QTL for HbF traits is present in populations of African origin and is also acting in sickle cell anaemia patients. We have started to distinguish effects originating from European and African ancestral populations in our admixed study populations.


Journal of Medical Genetics | 2011

Genomic alterations that contribute to the development of isolated and non-isolated congenital diaphragmatic hernia

Margaret J. Wat; Danielle Veenma; Jacob Hogue; Ashley M. Holder; Zhiyin Yu; Jeanette J. Wat; Neil A. Hanchard; Oleg A. Shchelochkov; Caraciolo J. Fernandes; Anthony Johnson; Kevin P. Lally; Anne Slavotinek; Olivier Danhaive; Thomas Schaible; Sau Wai Cheung; Katherine A. Rauen; Vijay S. Tonk; Dick Tibboel; Annelies de Klein; Daryl A. Scott

Background Congenital diaphragmatic hernia (CDH) is a life threatening birth defect. Most of the genetic factors that contribute to the development of CDH remain unidentified. Objective To identify genomic alterations that contribute to the development of diaphragmatic defects. Methods A cohort of 45 unrelated patients with CDH or diaphragmatic eventrations was screened for genomic alterations by array comparative genomic hybridisation or single nucleotide polymorphism based copy number analysis. Results Genomic alterations that were likely to have contributed to the development of CDH were identified in 8 patients. Inherited deletions of ZFPM2 were identified in 2 patients with isolated diaphragmatic defects and a large de novo 8q deletion overlapping the same gene was found in a patient with non-isolated CDH. A de novo microdeletion of chromosome 1q41q42 and two de novo microdeletions on chromosome 16p11.2 were identified in patients with non-isolated CDH. Duplications of distal 11q and proximal 13q were found in a patient with non-isolated CDH and a de novo single gene deletion of FZD2 was identified in a patient with a partial pentalogy of Cantrell phenotype. Conclusions Haploinsufficiency of ZFPM2 can cause dominantly inherited isolated diaphragmatic defects with incomplete penetrance. These data define a new minimal deleted region for CDH on 1q41q42, provide evidence for the existence of CDH related genes on chromosomes 16p11.2, 11q23-24 and 13q12, and suggest a possible role for FZD2 and Wnt signalling in pentalogy of Cantrell phenotypes. These results demonstrate the clinical utility of screening for genomic alterations in individuals with both isolated and non-isolated diaphragmatic defects.


Genes and Immunity | 2007

Genetic variation at the TNF locus and the risk of severe sequelae of ocular Chlamydia trachomatis infection in Gambians.

Angels Natividad; Neil A. Hanchard; Martin J. Holland; Olaimatu S. M. Mahdi; Mahamadou Diakite; Kirk A. Rockett; O Jallow; Hassan Joof; Dominic P. Kwiatkowski; David Mabey; Robin L. Bailey

Tumor necrosis factor (TNF) is thought to be a key mediator of the inflammatory and fibrotic response to Chlamydia trachomatis (Ct) infection. A large matched-pair case–control study investigated putative functional single nucleotide polymorphisms (SNPs) across the major histocompatibility complex (MHC) class III region, including TNF and its immediate neighbors nuclear factor of κ light polypeptide gene enhancer in B cells (IκBL), inhibitor like 1 and lymphotoxin alpha (LTA) in relation to the risk of scarring sequelae of ocular Ct infection. Haplotype and linkage disequilibrium analysis demonstrated two haplotypes, differing at position TNF-308, conferring an increased risk of trichiasis. The TNF-308A allele, and its bearing haplotype, correlated with increased TNF production in lymphocyte cultures stimulated with chlamydial elementary body antigen. Thus TNF-308A may determine directly, or be a marker of a high TNF producer phenotype associated with increased risk of sequelae of chlamydial infection. Multivariate analysis provided evidence for the presence of additional risk-associated variants near the TNF locus.


American Journal of Human Genetics | 2006

Screening for Recently Selected Alleles by Analysis of Human Haplotype Similarity

Neil A. Hanchard; Kirk A. Rockett; Chris C. A. Spencer; Graham Coop; Margaret Pinder; Muminatou Jallow; Martin Kimber; Gil McVean; Richard Mott; Dominic P. Kwiatkowski

There is growing interest in the use of haplotype-based methods for detecting recent selection. Here, we describe a method that uses a sliding window to estimate similarity among the haplotypes associated with any given single-nucleotide polymorphism (SNP) allele. We used simulations of natural selection to provide estimates of the empirical power of the method to detect recently selected alleles and found it to be comparable in power to the popular long-range haplotype test and more powerful than methods based on nucleotide diversity. We then applied the method to a recently selected allele--the sickle mutation at the HBB locus--and found it to have a signal of selection that was significantly stronger than that of simulated models both with and without strong selection. Using this method, we also evaluated >4,000 SNPs on chromosome 20, indicating the applicability of the method to regional data sets.


Thorax | 2009

Genetic association study for RSV bronchiolitis in infancy at the 5q31 cytokine cluster

Julian Forton; Kate Rowlands; Kirk A. Rockett; Neil A. Hanchard; M Herbert; Dominic P. Kwiatkowski; Jeremy Hull

Background: The pathophysiological basis of severe respiratory syncytial virus (RSV) bronchiolitis in infancy is poorly understood and has hindered vaccine development. Studies implicate the cell-mediated immune response in the pathogenesis of the disease. A recent twin study estimated a heritable contribution of 22% to RSV bronchiolitis. Genetic epidemiology provides a new approach to identifying important immune determinants of disease severity. Methods: A comprehensive high-density gene-region association study for severe RSV bronchiolitis in infancy at 5q31 across 11 genes including the Th2-cytokine cluster was performed. A haplotype tagging approach was used to analyse genetic variation at 113 single nucleotide polymorphisms (SNPs) in 780 independent cases and 1045 controls. The study had sufficient power to detect small effects, perform extensive haplotype analysis and analyse both a principal phenotype and a refined age-limited phenotype enriched for first-exposure RSV infection. Results: SNP associations were found at IL4 and a highly significant risk haplotype was identified across IL13 CNS-1 and IL4 (odds ratio 1.69, p<0.0001), present in both case-control and family-based analyses. All associations were strongest for a phenotype limited to <6 months of age, implicating this locus in primary RSV disease. The same risk haplotype has previously been shown to be associated with increased IL13 expression. Conclusions: A haplotype at IL13–1L4, which is associated with increased IL13 production, confers an increased risk of severe primary RSV bronchiolitis in early infancy. This study, together with previous studies implicating the same locus in atopic sensitisation, suggests that primary RSV bronchiolitis and atopy share a genetic contribution at the IL13–IL4 locus.


Blood | 2008

Tumor necrosis factor SNP haplotypes are associated with iron deficiency anemia in West African children

Sarah H. Atkinson; Kirk A. Rockett; Gareth J. Morgan; Philip Bejon; Giorgio Sirugo; Maria A. O'Connell; Neil A. Hanchard; Dominic P. Kwiatkowski; Andrew M. Prentice

Plasma levels of tumor necrosis factor-alpha (TNF-alpha) are significantly raised in malaria infection and TNF-alpha is thought to inhibit intestinal iron absorption and macrophage iron release. This study investigated putative functional single nucleotide polymorphisms (SNPs) and haplotypes across the major histocompatibility complex (MHC) class III region, including TNF and its immediate neighbors nuclear factor of kappa light polypeptide gene enhancer in B cells (lkappaBL), inhibitor-like 1 and lymphotoxin alpha (LTA), in relation to nutritional iron status and anemia, in a cohort of 780 children across a malaria season. The prevalence of iron deficiency anemia (IDA) increased over the malaria season (P < .001). The TNF(-308) AA genotype was associated with an increased risk of iron deficiency (adjusted OR 8.1; P = .001) and IDA (adjusted OR 5.1; P = .01) at the end of the malaria season. No genotypes were associated with IDA before the malaria season. Thus, TNF appears to be a risk factor for iron deficiency and IDA in children in a malaria-endemic environment and this is likely to be due to a TNF-alpha-induced block in iron absorption.


British Journal of Haematology | 2005

The frequency of the sickle allele in Jamaica has not declined over the last 22 years

Neil A. Hanchard; Ian R. Hambleton; Rosalind M. Harding; Colin A. McKenzie

The ‘malaria hypothesis’ predicts that the frequency of the sickle allele, which is high in malaria‐endemic African populations, should decline with each generation in populations of African descent living in areas where malaria is no longer endemic. In order to determine whether this has been the case in Jamaica, we compared haemoglobin electrophoresis results from two hospital‐based screening programmes separated by more than 20 years (i.e. approximately one generation). The first comprised 100 000 neonates screened between 1973 and 1981, the second, 104 183 neonates screened between 1995 and 2003. The difference in frequency of the sickle allele was small (5·47% in the first cohort and 5·38% in the second screening cohort) and not significant (Z = 1·23, P = 0·22). The same was true of the sickle trait frequency (10·05% in the first cohort and 9·85% in the second, Z = 1·45, P = 0·15). These differences were smaller than predicted under simple deterministic models based on the malaria hypothesis, and suggest that these models may not capture important determinants of allele and trait frequency decline (or persistence) in contemporary populations. Refining the expectations for allele and trait frequency change for Jamaica and other similar populations is an area for future study.


American Journal of Human Genetics | 2013

TM4SF20 Ancestral Deletion and Susceptibility to a Pediatric Disorder of Early Language Delay and Cerebral White Matter Hyperintensities

Wojciech Wiszniewski; Jill V. Hunter; Neil A. Hanchard; Jason R. Willer; Chad A. Shaw; Qi Tian; Anna Illner; Xueqing Wang; Sau Wai Cheung; Ankita Patel; Ian M. Campbell; Violet Gelowani; Patricia Hixson; Audrey R. Ester; Mahshid S. Azamian; Lorraine Potocki; Gladys Zapata; Patricia Hernandez; Melissa B. Ramocki; Regie Lyn P. Santos-Cortez; Gao Wang; Michele K. York; Monica J. Justice; Zili D. Chu; Patricia I. Bader; Lisa Omo-Griffith; Nirupama S. Madduri; Gunter Scharer; Heather P. Crawford; Pattamawadee Yanatatsaneejit

White matter hyperintensities (WMHs) of the brain are important markers of aging and small-vessel disease. WMHs are rare in healthy children and, when observed, often occur with comorbid neuroinflammatory or vasculitic processes. Here, we describe a complex 4 kb deletion in 2q36.3 that segregates with early childhood communication disorders and WMH in 15 unrelated families predominantly from Southeast Asia. The premature brain aging phenotype with punctate and multifocal WMHs was observed in ~70% of young carrier parents who underwent brain MRI. The complex deletion removes the penultimate exon 3 of TM4SF20, a gene encoding a transmembrane protein of unknown function. Minigene analysis showed that the resultant net loss of an exon introduces a premature stop codon, which, in turn, leads to the generation of a stable protein that fails to target to the plasma membrane and accumulates in the cytoplasm. Finally, we report this deletion to be enriched in individuals of Vietnamese Kinh descent, with an allele frequency of about 1%, embedded in an ancestral haplotype. Our data point to a constellation of early language delay and WMH phenotypes, driven by a likely toxic mechanism of TM4SF20 truncation, and highlight the importance of understanding and managing population-specific low-frequency pathogenic alleles.


JAMA Pediatrics | 2017

Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management

Linyan Meng; Mohan Pammi; Anirudh Saronwala; Pilar L. Magoulas; Andrew Ray Ghazi; Francesco Vetrini; Jing Zhang; Weimin He; Avinash V. Dharmadhikari; Chunjing Qu; Patricia A. Ward; Alicia Braxton; Swetha Narayanan; Xiaoyan Ge; Mari Tokita; Teresa Santiago-Sim; Hongzheng Dai; Theodore Chiang; Hadley Stevens Smith; Mahshid S. Azamian; Laurie Robak; Bret Bostwick; Christian P. Schaaf; Lorraine Potocki; Fernando Scaglia; Carlos A. Bacino; Neil A. Hanchard; Michael F. Wangler; Daryl A. Scott; Chester W. Brown

Importance While congenital malformations and genetic diseases are a leading cause of early infant death, to our knowledge, the contribution of single-gene disorders in this group is undetermined. Objective To determine the diagnostic yield and use of clinical exome sequencing in critically ill infants. Design, Setting, and Participants Clinical exome sequencing was performed for 278 unrelated infants within the first 100 days of life who were admitted to Texas Children’s Hospital in Houston, Texas, during a 5-year period between December 2011 and January 2017. Exome sequencing types included proband exome, trio exome, and critical trio exome, a rapid genomic assay for seriously ill infants. Main Outcomes and Measures Indications for testing, diagnostic yield of clinical exome sequencing, turnaround time, molecular findings, patient age at diagnosis, and effect on medical management among a group of critically ill infants who were suspected to have genetic disorders. Results The mean (SEM) age for infants participating in the study was 28.5 (1.7) days; of these, the mean (SEM) age was 29.0 (2.2) days for infants undergoing proband exome sequencing, 31.5 (3.9) days for trio exome, and 22.7 (3.9) days for critical trio exome. Clinical indications for exome sequencing included a range of medical concerns. Overall, a molecular diagnosis was achieved in 102 infants (36.7%) by clinical exome sequencing, with relatively low yield for cardiovascular abnormalities. The diagnosis affected medical management for 53 infants (52.0%) and had a substantial effect on informed redirection of care, initiation of new subspecialist care, medication/dietary modifications, and furthering life-saving procedures in select patients. Critical trio exome sequencing revealed a molecular diagnosis in 32 of 63 infants (50.8%) at a mean (SEM) of 33.1 (5.6) days of life with a mean (SEM) turnaround time of 13.0 (0.4) days. Clinical care was altered by the diagnosis in 23 of 32 patients (71.9%). The diagnostic yield, patient age at diagnosis, and medical effect in the group that underwent critical trio exome sequencing were significantly different compared with the group who underwent regular exome testing. For deceased infants (n = 81), genetic disorders were molecularly diagnosed in 39 (48.1%) by exome sequencing, with implications for recurrence risk counseling. Conclusions and Relevance Exome sequencing is a powerful tool for the diagnostic evaluation of critically ill infants with suspected monogenic disorders in the neonatal and pediatric intensive care units and its use has a notable effect on clinical decision making.

Collaboration


Dive into the Neil A. Hanchard's collaboration.

Top Co-Authors

Avatar

Dominic P. Kwiatkowski

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Kirk A. Rockett

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

John W. Belmont

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chester W. Brown

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

James R. Lupski

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Richard A. Gibbs

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Colin A. McKenzie

University of the West Indies

View shared research outputs
Top Co-Authors

Avatar

Jill A. Rosenfeld

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge