Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil A. Harrison is active.

Publication


Featured researches published by Neil A. Harrison.


Biological Psychiatry | 2009

Inflammation Causes Mood Changes Through Alterations in Subgenual Cingulate Activity and Mesolimbic Connectivity

Neil A. Harrison; Lena Brydon; Cicely Walker; Marcus A. Gray; Andrew Steptoe; Hugo D. Critchley

Background Inflammatory cytokines are implicated in the pathophysiology of depression. In rodents, systemically administered inflammatory cytokines induce depression-like behavior. Similarly in humans, therapeutic interferon-α induces clinical depression in a third of patients. Conversely, patients with depression also show elevated pro-inflammatory cytokines. Objectives To determine the neural mechanisms underlying inflammation-associated mood change and modulatory effects on circuits involved in mood homeostasis and affective processing. Methods In a double-blind, randomized crossover study, 16 healthy male volunteers received typhoid vaccination or saline (placebo) injection in two experimental sessions. Mood questionnaires were completed at baseline and at 2 and 3 hours. Two hours after injection, participants performed an implicit emotional face perception task during functional magnetic resonance imaging. Analyses focused on neurobiological correlates of inflammation-associated mood change and affective processing within regions responsive to emotional expressions and implicated in the etiology of depression. Results Typhoid but not placebo injection produced an inflammatory response indexed by increased circulating interleukin-6 and significant mood reduction at 3 hours. Inflammation-associated mood deterioration correlated with enhanced activity within subgenual anterior cingulate cortex (sACC) (a region implicated in the etiology of depression) during emotional face processing. Furthermore, inflammation-associated mood change reduced connectivity of sACC to amygdala, medial prefrontal cortex, nucleus accumbens, and superior temporal sulcus, which was modulated by peripheral interleukin-6. Conclusions Inflammation-associated mood deterioration is reflected in changes in sACC activity and functional connectivity during evoked responses to emotional stimuli. Peripheral cytokines modulate this mood-dependent sACC connectivity, suggesting a common pathophysiological basis for major depressive disorder and sickness-associated mood change and depression.


Neuron | 2013

Visceral influences on brain and behavior

Hugo D. Critchley; Neil A. Harrison

Mental processes and their neural substrates are intimately linked to the homeostatic control of internal bodily state. There are a set of distinct interoceptive pathways that directly and indirectly influence brain functions. The anatomical organization of these pathways and the psychological/behavioral expressions of their influence appear along discrete, evolutionarily conserved dimensions that are tractable to a mechanistic understanding. Here, we review the role of these pathways as sources of biases to perception, cognition, emotion, and behavior and arguably the dynamic basis to the concept of self.


Biological Psychiatry | 2008

Peripheral Inflammation is Associated with Altered Substantia Nigra Activity and Psychomotor Slowing in Humans

Lena Brydon; Neil A. Harrison; Cicely Walker; Andrew Steptoe; Hugo D. Critchley

Background Systemic infections commonly cause sickness symptoms including psychomotor retardation. Inflammatory cytokines released during the innate immune response are implicated in the communication of peripheral inflammatory signals to the brain. Methods We used functional magnetic resonance brain imaging (fMRI) to investigate neural effects of peripheral inflammation following typhoid vaccination in 16 healthy men, using a double-blind, randomized, crossover-controlled design. Results Vaccination had no global effect on neurovascular coupling but markedly perturbed neural reactivity within substantia nigra during low-level visual stimulation. During a cognitive task, individuals in whom typhoid vaccination engendered higher levels of circulating interleukin-6 had significantly slower reaction time responses. Prolonged reaction times and larger interleukin-6 responses were associated with evoked neural activity within substantia nigra. Conclusions Our findings provide mechanistic insights into the interaction between inflammation and neurocognitive performance, specifically implicating circulating cytokines and midbrain dopaminergic nuclei in mediating the psychomotor consequences of systemic infection.


Biological Psychiatry | 2009

Neural origins of human sickness in interoceptive responses to inflammation.

Neil A. Harrison; Lena Brydon; Cicely Walker; Marcus A. Gray; Andrew Steptoe; R. J. Dolan; Hugo D. Critchley

Background Inflammation is associated with psychological, emotional, and behavioral disturbance, known as sickness behavior. Inflammatory cytokines are implicated in coordinating this central motivational reorientation accompanying peripheral immunologic responses to pathogens. Studies in rodents suggest an afferent interoceptive neural mechanism, although comparable data in humans are lacking. Methods In a double-blind, randomized crossover study, 16 healthy male volunteers received typhoid vaccination or saline (placebo) injection in two experimental sessions. Profile of Mood State questionnaires were completed at baseline and at 2 and 3 hours. Two hours after injection, participants performed a high-demand color word Stroop task during functional magnetic resonance imaging. Blood samples were performed at baseline and immediately after scanning. Results Typhoid but not placebo injection produced a robust inflammatory response indexed by increased circulating interleukin-6 accompanied by a significant increase in fatigue, confusion, and impaired concentration at 3 hours. Performance of the Stroop task under inflammation activated brain regions encoding representations of internal bodily state. Spatial and temporal characteristics of this response are consistent with interoceptive information flow via afferent autonomic fibers. During performance of this task, activity within interoceptive brain regions also predicted individual differences in inflammation-associated but not placebo-associated fatigue and confusion. Maintenance of cognitive performance, despite inflammation-associated fatigue, led to recruitment of additional prefrontal cortical regions. Conclusions These findings suggest that peripheral infection selectively influences central nervous system function to generate core symptoms of sickness and reorient basic motivational states.


Molecular Psychiatry | 2015

Disorders of compulsivity: a common bias towards learning habits

Valerie Voon; Katie L. Derbyshire; Christian Rück; Michael A Irvine; Yulia Worbe; Jesper Enander; Lrn Schreiber; Claire M. Gillan; Naomi A. Fineberg; Barbara J. Sahakian; Trevor W. Robbins; Neil A. Harrison; Jonathan Wood; Nathaniel D. Daw; Peter Dayan; Jon E. Grant; Edward T. Bullmore

Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms, model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further, we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving compulsion.


The Journal of Neuroscience | 2010

The Embodiment of Emotional Feelings in the Brain

Neil A. Harrison; Marcus A. Gray; Peter J. Gianaros; Hugo D. Critchley

Central to Walter Cannons challenge to peripheral theories of emotion was that bodily arousal responses are too undifferentiated to account for the wealth of emotional feelings. Despite considerable evidence to the contrary, this remains widely accepted and for nearly a century has left the issue of whether visceral afferent signals are essential for emotional experience unresolved. Here we combine functional magnetic resonance imaging and multiorgan physiological recording to dissect experience of two distinct disgust forms and their relationship to peripheral and central physiological activity. We show that experience of core and body–boundary–violation disgust are dissociable in both peripheral autonomic and central neural responses and also that emotional experience specific to anterior insular activity encodes these different underlying patterns of peripheral physiological responses. These findings demonstrate that organ-specific physiological responses differentiate emotional feeling states and support the hypothesis that central representations of organism physiological homeostasis constitute a critical aspect of the neural basis of feelings.


The Journal of Neuroscience | 2008

Explaining Enhanced Logical Consistency during Decision Making in Autism

Benedetto De Martino; Neil A. Harrison; Steven Knafo; Geoffrey Bird; R. J. Dolan

The emotional responses elicited by the way options are framed often results in lack of logical consistency in human decision making. In this study, we investigated subjects with autism spectrum disorder (ASD) using a financial task in which the monetary prospects were presented as either loss or gain. We report both behavioral evidence that ASD subjects show a reduced susceptibility to the framing effect and psycho-physiological evidence that they fail to incorporate emotional context into the decision-making process. On this basis, we suggest that this insensitivity to contextual frame, although enhancing choice consistency in ASD, may also underpin core deficits in this disorder. These data highlight both benefits and costs arising from multiple decision processes in human cognition.


PLOS ONE | 2007

Modulation of Emotional Appraisal by False Physiological Feedback during fMRI

Marcus A. Gray; Neil A. Harrison; Stefan Wiens; Hugo D. Critchley

Background James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. Methodology/Principal Findings We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. Conclusions/Significance Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order “cognitive” representations of bodily arousal state.


PLOS ONE | 2014

Neural Correlates of Sexual Cue Reactivity in Individuals with and without Compulsive Sexual Behaviours

Valerie Voon; Tom B. Mole; Paula Banca; Laura Porter; Laurel S. Morris; Simon Mitchell; Tatyana Lapa; Judy Karr; Neil A. Harrison; Marc N. Potenza; Michael A Irvine

Although compulsive sexual behaviour (CSB) has been conceptualized as a “behavioural” addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions.


The Journal of Neuroscience | 2009

Following One's Heart: Cardiac Rhythms Gate Central Initiation of Sympathetic Reflexes

Marcus A. Gray; Karin Rylander; Neil A. Harrison; B. Gunnar Wallin; Hugo D. Critchley

Central nervous processing of environmental stimuli requires integration of sensory information with ongoing autonomic control of cardiovascular function. Rhythmic feedback of cardiac and baroreceptor activity contributes dynamically to homeostatic autonomic control. We examined how the processing of brief somatosensory stimuli is altered across the cardiac cycle to evoke differential changes in bodily state. Using functional magnetic resonance imaging of brain and noninvasive beat-to-beat cardiovascular monitoring, we show that stimuli presented before and during early cardiac systole elicited differential changes in neural activity within amygdala, anterior insula and pons, and engendered different effects on blood pressure. Stimulation delivered during early systole inhibited blood pressure increases. Individual differences in heart rate variability predicted magnitude of differential cardiac timing responses within periaqueductal gray, amygdala and insula. Our findings highlight integration of somatosensory and phasic baroreceptor information at cortical, limbic and brainstem levels, with relevance to mechanisms underlying pain control, hypertension and anxiety.

Collaboration


Dive into the Neil A. Harrison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valerie Voon

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Marcus A. Gray

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mara Cercignani

Brighton and Sussex Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludovico Minati

Brighton and Sussex Medical School

View shared research outputs
Top Co-Authors

Avatar

E. Cooper

Brighton and Sussex Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge