Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil Brocklehurst is active.

Publication


Featured researches published by Neil Brocklehurst.


PLOS ONE | 2012

The completeness of the fossil record of mesozoic birds: implications for early avian evolution.

Neil Brocklehurst; Paul Upchurch; Philip D. Mannion; Jingmai K. O'Connor

Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but have not yet been sampled or are difficult to identify because of the fragmentary nature of the specimens.


Paleobiology | 2013

The early evolution of synapsids, and the influence of sampling on their fossil record

Neil Brocklehurst; Christian F. Kammerer; Jörg Fröbisch

Abstract Synapsids dominated the terrestrial realm between the late Pennsylvanian and the Triassic. Their early evolution includes some of the first amniotes to evolve large size, herbivory, and macro-predators. However, little research has focused on the changes in diversity occurring during this early phase in their evolutionary history, with more effort concentrating on later events such the Permo-Triassic extinction. Here we assess synapsid diversity, at both the species and genus levels, between the Carboniferous (Moscovian) and the Middle Permian (Capitanian). A raw, taxic diversity (richness) estimate is generated, and we use two separate methods to correct for sampling biases in this curve. To remove the effect of anthropogenic sampling bias, we apply a recently published modification of the residual diversity method, and then generate a supertree, using matrix representation with parsimony to infer ghost lineages and obtain a phylogenetic diversity estimate. The general diversity pattern reflects the initial diversification of synapsids in the late Pennsylvanian and early Cisuralian, which was followed by an extinction event during the Sakmarian. Diversity recovered during the Artinskian and Kungurian, coinciding with the radiation of Caseidae, although other families begin to decline. A second extinction event occurred across the Kungurian/Roadian boundary, in which Edaphosauridae and Ophiacodontidae died out although Caseidae and Therapsida diversified. The sampling-corrected curves reveal further extinction during the Roadian, although therapsids were again unaffected. Pelycosaurian-grade synapsids survived during the Wordian and Capitanian, but were a minor part of an otherwise therapsid-dominated fauna. Evidence of significant anthropogenic sampling bias calls into question previous diversity studies that have not employed sampling correction.


Scientific Reports | 2015

Elevated Extinction Rates as a Trigger for Diversification Rate Shifts: Early Amniotes as a Case Study.

Neil Brocklehurst; Marcello Ruta; Johannes Müller; Jörg Fröbisch

Tree shape analyses are frequently used to infer the location of shifts in diversification rate within the Tree of Life. Many studies have supported a causal relationship between shifts and temporally coincident events such as the evolution of “key innovations”. However, the evidence for such relationships is circumstantial. We investigated patterns of diversification during the early evolution of Amniota from the Carboniferous to the Triassic, subjecting a new supertree to analyses of tree balance in order to infer the timing and location of diversification shifts. We investigated how uneven origination and extinction rates drive diversification shifts, and use two case studies (herbivory and an aquatic lifestyle) to examine whether shifts tend to be contemporaneous with evolutionary novelties. Shifts within amniotes tend to occur during periods of elevated extinction, with mass extinctions coinciding with numerous and larger shifts. Diversification shifts occurring in clades that possess evolutionary innovations do not coincide temporally with the appearance of those innovations, but are instead deferred to periods of high extinction rate. We suggest such innovations did not cause increases in the rate of cladogenesis, but allowed clades to survive extinction events. We highlight the importance of examining general patterns of diversification before interpreting specific shifts.


Proceedings of the Royal Society B: Biological Sciences | 2017

Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian

Neil Brocklehurst; Michael O. Day; Bruce S. Rubidge; Jörg Fröbisch

The terrestrial vertebrate fauna underwent a substantial change in composition between the lower and middle Permian. The lower Permian fauna was characterized by diverse and abundant amphibians and pelycosaurian-grade synapsids. During the middle Permian, a therapsid-dominated fauna, containing a diverse array of parareptiles and a considerably reduced richness of amphibians, replaced this. However, it is debated whether the transition is a genuine event, accompanied by a mass extinction, or whether it is merely an artefact of the shift in sampling from the palaeoequatorial latitudes to the palaeotemperate latitudes. Here we use an up-to-date biostratigraphy and incorporate recent discoveries to thoroughly review the Permian tetrapod fossil record. We suggest that the faunal transition represents a genuine event; the lower Permian temperate faunas are more similar to lower Permian equatorial faunas than middle Permian temperate faunas. The transition was not consistent across latitudes; the turnover occurred more rapidly in Russia, but was delayed in North America. The argument that the mass extinction is an artefact of a latitudinal biodiversity gradient and a shift in sampling localities is rejected: sampling correction demonstrates an inverse latitudinal biodiversity gradient was prevalent during the Permian, with peak diversity in the temperate latitudes.


PLOS ONE | 2016

A Re-Description of ‘Mycterosaurus’ smithae, an Early Permian Eothyridid, and Its Impact on the Phylogeny of Pelycosaurian-Grade Synapsids

Neil Brocklehurst; Robert R. Reisz; Vincent Fernandez; Jörg Fröbisch

‘Mycterosaurus’ smithae, from the Cisuralian (early Permian) of Colorado, was first described in 1965 as a second species of the genus Mycterosaurus. While the type species of this genus, M. longiceps, has been shown by multiple cladistic analyses to belong to the basal synapsid family Varanopidae, ‘M.’ smithae has been largely ignored since its original description. Additional preparation and synchrotron scanning has revealed new significant information that supports the assignment of this species to a new genus: Vaughnictis gen. nov. Vaughnictis lacks many of the characteristics of mycterosaurines and varanopids in general: it lacks the slender femur, the linguo-labially compressed and strongly recurved teeth, and the lateral boss on the postorbital characteristic of this family. Instead, it possesses coronoid teeth, a large supratemporal, and a large pineal foramen positioned midway along the length of the parietal, features that support its assignment to Eothyrididae. Moreover, the postcranium shares many characters with the eothyridid Oedaleops. An expanded version of a recently published phylogenetic analysis of pelycosaurian-grade synapsids positions Vaughnictis as the sister taxon of Eothyris within the clade Eothyrididae. The addition of data on the postcranium of eothyridids and the inclusion of the recently-described basal caseid Eocasea confirms the recently-disputed position of caseasaurs as the most basal synapsids. As the parsimony analysis produced low support values and a lack of resolution due to missing data, additional analyses were undertaken using Bayesian and Implied Weights methods, which produced better resolution and relationships with higher support values. While the results are similar, alternative positions for the enigmatic Moscovian age (Carboniferous) synapsid Echinerpeton are suggested by Bayesian analysis; the parsimony analysis found it to be an ophiacodontid, while the Bayesian and Implied Weights analysis found it to be the sister to the Sphenacomorpha.


Paleobiology | 2016

Assessing the completeness of the fossil record: comparison of different methods applied to parareptilian tetrapods (Vertebrata: Sauropsida)

Antoine Verrière; Neil Brocklehurst; Jörg Fröbisch

Abstract. As paleontological studies are generally distorted by gaps and biases in the fossil record, it is important to assess its completeness. Here we address the fossil record of Parareptilia, a Permian—Triassic amniote clade, applying two measures of specimen completeness: the skeletal completeness metric (SCM) and the character completeness metric (CCM). The SCM quantifies how much of the skeletal material of a taxon is preserved, whereas the CCM measures the amount of phylogenetic information available. The latter was implemented using two different approaches. In this study, we compare three completeness metrics. Two CCM implementations show a strong correlation with each other, but only the second implementation of the CCM correlates significantly with the SCM, possibly due to character selection in phylogenetic data sets. There is no correlation between diversity of parareptiles and their completeness, implying that the observed fluctuations in diversity are not driven by the completeness of the fossils. The mean completeness of parareptiles through time is consistently high compared with previously studied tetrapod clades, suggesting that most parareptile taxa are based on reasonably complete specimens. Clade-specific differences reveal no link between body size and completeness. However, the analyses confirm the impact of ecology, with aquatic mesosaurids being better preserved than terrestrial taxa.


Journal of Systematic Palaeontology | 2018

The postcranial skeleton of Ennatosaurus tecton (Synapsida, Caseidae)

Marco Romano; Neil Brocklehurst; Jörg Fröbisch

The postcranial material referable to the Russian caseid Ennatosaurus tecton from the middle Permian is described. Although the cranium has been recently restudied in detail, the descriptions currently available for the postcranial skeleton are essentially limited to the original short account on the holotype provided by Efremov in 1956. The postcranium of Ennatosaurus is informative with respect to both taxonomy and phylogeny, with autapomorphic characters present particularly in the vertebral column. In addition to the anatomical description of the elements presented here, eight principal component analyses were conducted to investigate the position of the various osteological elements of Ennatosaurus within caseid morphospace. The inclusion of members of all major groups of ‘pelycosaurs’ and selected outgroup taxa allowed us to make more extensive preliminary inferences regarding postcranial morphospace occupation of these basal synapsids for each individually considered bone. The analysis revealed a major decoupling among the morphospaces of stylopodial and zeugopodial elements, with femora and humeri showing a shared common pattern, and a wider overlap in their respective morphospace. Conversely, the ulnae, radii, tibiae and fibulae show well-separated regions of morphospace in the different clades, indicating their potential importance, not only for functional and biomechanical studies, but also for taxonomic differentiation. Finally, a 3D photogrammetric model of the mounted specimen at the Paleontological Institute in Moscow forms the basis for the first in vivo reconstruction of Ennatosaurus tecton, providing a potentially realistic picture of the Russian caseid in life.


Scientific Reports | 2017

Discrete and continuous character-based disparity analyses converge to the same macroevolutionary signal: a case study from captorhinids

Marco Romano; Neil Brocklehurst; Jörg Fröbisch

The relationship between diversity and disparity during the evolutionary history of a clade provides unique insights into evolutionary radiations and the biological response to bottlenecks and to extinctions. Here we present the first comprehensive comparison of diversity and disparity of captorhinids, a group of basal amniotes that is important for understanding the early evolution of high-fiber herbivory. A new fully resolved phylogeny is presented, obtained by the inclusion of 31 morphometric characters. The new dataset is used to calculate diversity and disparity through the evolutionary history of the clade, using both discrete and continuous characters. Captorhinids do not show a decoupling between diversity and disparity, and are characterized by a rather symmetric disparity distribution, with a peak in occupied morphospace at about the midpoint of the clade’s evolutionary history (Kungurian). This peak represents a delayed adaptive radiation, identified by the first appearance of several high-fiber herbivores in the clade, along with numerous omnivorous taxa. The discrete characters and continuous morphometric characters indicate the same disparity trends. Therefore, we argue that in the absence of one of these two possible proxies, the disparity obtained from just one source can be considered robust and representative of a general disparity pattern.


PeerJ | 2017

Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores

Neil Brocklehurst

The evolution of herbivory in early tetrapods was crucial in the establishment of terrestrial ecosystems, although it is so far unclear what effect this innovation had on the macro-evolutionary patterns observed within this clade. The clades that entered this under-filled region of ecospace might be expected to have experienced an “adaptive radiation”: an increase in rates of morphological evolution and speciation driven by the evolution of a key innovation. However such inferences are often circumstantial, being based on the coincidence of a rate shift with the origin of an evolutionary novelty. The conclusion of an adaptive radiation may be made more robust by examining the pattern of the evolutionary shift; if the evolutionary innovation coincides not only with a shift in rates of morphological evolution, but specifically in the morphological characteristics relevant to the ecological shift of interest, then one may more plausibly infer a causal relationship between the two. Here I examine the impact of diet evolution on rates of morphological change in one of the earliest tetrapod clades to evolve high-fibre herbivory: Captorhinidae. Using a method of calculating heterogeneity in rates of discrete character change across a phylogeny, it is shown that a significant increase in rates of evolution coincides with the transition to herbivory in captorhinids. The herbivorous captorhinids also exhibit greater morphological disparity than their faunivorous relatives, indicating more rapid exploration of new regions of morphospace. As well as an increase in rates of evolution, there is a shift in the regions of the skeleton undergoing the most change; the character changes in the herbivorous lineages are concentrated in the mandible and dentition. The fact that the increase in rates of evolution coincides with increased change in characters relating to food acquisition provides stronger evidence for a causal relationship between the herbivorous diet and the radiation event.


Proceedings of the Royal Society B: Biological Sciences | 2018

Diversity change during the rise of tetrapods and the impact of the ‘Carboniferous rainforest collapse’

Emma M. Dunne; Roger A. Close; David J. Button; Neil Brocklehurst; Daniel D. Cashmore; Graeme T. Lloyd; Richard J. Butler

The Carboniferous and early Permian were critical intervals in the diversification of early four-limbed vertebrates (tetrapods), yet the major patterns of diversity and biogeography during this time remain unresolved. Previous estimates suggest that global tetrapod diversity rose continuously across this interval and that habitat fragmentation following the ‘Carboniferous rainforest collapse’ (CRC) drove increased endemism among communities. However, previous work failed to adequately account for spatial and temporal biases in sampling. Here, we reassess early tetrapod diversity and biogeography with a new global species-level dataset using sampling standardization and network biogeography methods. Our results support a tight relationship between observed richness and sampling, particularly during the Carboniferous. We found that subsampled species richness initially increased into the late Carboniferous, then decreased substantially across the Carboniferous/Permian boundary before slowly recovering in the early Permian. Our analysis of biogeography does not support the hypothesis that the CRC drove endemism; instead, we found evidence for increased cosmopolitanism in the early Permian. While a changing environment may have played a role in reducing diversity in the earliest Permian, our results suggest that the CRC was followed by increased global connectivity between communities, possibly reflecting both reduced barriers to dispersal and the diversification of amniotes.

Collaboration


Dive into the Neil Brocklehurst's collaboration.

Top Co-Authors

Avatar

Jörg Fröbisch

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma M. Dunne

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Button

North Carolina Museum of Natural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge