Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil Brummitt is active.

Publication


Featured researches published by Neil Brummitt.


Science | 2013

Essential Biodiversity Variables

Henrique M. Pereira; Simon Ferrier; Michele Walters; Gary N. Geller; R.H.G. Jongman; Robert J. Scholes; Michael William Bruford; Neil Brummitt; Stuart H. M. Butchart; A C Cardoso; E Dulloo; Daniel P. Faith; Jörg Freyhof; Richard D. Gregory; Carlo H. R. Heip; Robert Höft; George C. Hurtt; Walter Jetz; Daniel S. Karp; Melodie A. McGeoch; D Obura; Yusuke Onoda; Nathalie Pettorelli; Belinda Reyers; Roger Sayre; Joern P. W. Scharlemann; Simon N. Stuart; Eren Turak; Matt Walpole; Martin Wegmann

A global system of harmonized observations is needed to inform scientists and policy-makers. Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.


Conservation Biology | 2009

Plant Diversity Hotspots in the Atlantic Coastal Forests of Brazil

Charlotte Murray-Smith; Neil Brummitt; Ary Teixeira de Oliveira-Filho; Steven P. Bachman; Justin Moat; Eimear Nic Lughadha; Eve Lucas

Plant-diversity hotspots on a global scale are well established, but smaller local hotspots within these must be identified for effective conservation of plants at the global and local scales. We used the distributions of endemic and endemic-threatened species of Myrtaceae to indicate areas of plant diversity and conservation importance within the Atlantic coastal forests (Mata Atlântica) of Brazil. We applied 3 simple, inexpensive geographic information system (GIS) techniques to a herbarium specimen database: predictive species-distribution modeling (Maxent); complementarity analysis (DIVA-GIS); and mapping of herbarium specimen collection locations. We also considered collecting intensity, which is an inherent limitation of use of natural history records for biodiversity studies. Two separate areas of endemism were evident: the Serra do Mar mountain range from Paraná to Rio de Janeiro and the coastal forests of northern Espírito Santo and southern Bahia. We identified 12 areas of approximately 35 km(2) each as priority areas for conservation. These areas had the highest species richness and were highly threatened by urban and agricultural expansion. Observed species occurrences, species occurrences predicted from the model, and results of our complementarity analysis were congruent in identifying those areas with the most endemic species. These areas were then prioritized for conservation importance by comparing ecological data for each.


Annals of the Missouri Botanical Garden | 2009

A GLOBAL ASSESSMENT OF DISTRIBUTION, DIVERSITY, ENDEMISM, AND TAXONOMIC EFFORT IN THE RUBIACEAE 1

Aaron P. Davis; Rafaël Govaerts; Diane M. Bridson; Markus Ruhsam; Justin Moat; Neil Brummitt

Abstract Analyses of distribution, diversity, endemism, and taxonomic effort for Rubiaceae are reported, based on queries from a World Rubiaceae Checklist database. Rubiaceae are widespread and occur in all major regions of the world except the Antarctic Continent, but are predominantly a group in the tropics with greatest diversity in low- to mid-altitude humid forests. A count of Rubiaceae species and genera is given (13,143 spp./611 genera), which confirms that this is the fourth largest angiosperm family. Psychotria L. is the largest genus in the Rubiaceae (1834 spp.) and the third largest angiosperm genus. Most genera (72%) have fewer than 10 species and 211 are monotypic. Calculation of relative species diversity and percentage endemism enables areas of high diversity and endemism to be enumerated, and identifies areas where further field collecting and taxonomic research are required. Endemism is generally high in Rubiaceae, which supports data from recent studies showing that many species have restricted distributions. Given the assumed ecologic sensitivity of Rubiaceae, in combination with a range of other factors including restricted distribution, we suggest that species in this family are particularly vulnerable to extinction. The rate at which new species are being described is inadequate; more resources are required before the diversity of Rubiaceae is satisfactorily enumerated.


Philosophical Transactions of the Royal Society B | 2005

Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action

E. Nic Lughadha; Jonathan E. M. Baillie; W. Barthlott; Neil Brummitt; M. R. Cheek; Aljos Farjon; Rafaël Govaerts; Kate Hardwick; Craig Hilton-Taylor; Thomas R. Meagher; Justin Moat; J. Mutke; Alan Paton; L. J. Pleasants; Vincent Savolainen; G. E. Schatz; Paul Smith; I. Turner; P. Wyse-Jackson; Peter R. Crane

Vascular plants are often considered to be among the better known large groups of organisms, but gaps in the available baseline data are extensive, and recent estimates of total known (described) seed plant species range from 200 000 to 422 000. Of these, global assessments of conservation status using International Union for the Conservation of Nature (IUCN) categories and criteria are available for only approximately 10 000 species. In response to recommendations from the Conference of the Parties to the Convention on Biological Diversity to develop biodiversity indicators based on changes in the status of threatened species, and trends in the abundance and distribution of selected species, we examine how existing data, in combination with limited new data collection, can be used to maximum effect. We argue that future work should produce Red List Indices based on a representative subset of plant species so that the limited resources currently available are directed towards redressing taxonomic and geographical biases apparent in existing datasets. Sampling the data held in the worlds major herbaria, in combination with Geographical Information Systems techniques, can produce preliminary conservation assessments and help to direct selective survey work using existing field networks to verify distributions and gather population data. Such data can also be used to backcast threats and potential distributions through time. We outline an approach that could result in: (i) preliminary assessments of the conservation status of tens of thousands of species not previously assessed, (ii) significant enhancements in the coverage and representation of plant species on the IUCN Red List, and (iii) repeat and/or retrospective assessments for a significant proportion of these. This would result in more robust Sampled Red List Indices that can be defended as more representative of plant diversity as a whole; and eventually, comprehensive assessments at species level for one or more major families of angiosperms. The combined results would allow scientifically defensible generalizations about the current status of plant diversity by 2010 as well as tentative comments on trends. Together with other efforts already underway, this approach would establish a firmer basis for ongoing monitoring of the status of plant diversity beyond 2010 and a basis for comparison with the trend data available for vertebrates.


Journal of Applied Ecology | 2016

Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective

Ilse R. Geijzendorffer; Eugenie C. Regan; Henrique M. Pereira; Lluís Brotons; Neil Brummitt; Yoni Gavish; Peter Haase; Corinne S. Martin; Jean-Baptiste Mihoub; Cristina Secades; Dirk S. Schmeller; Stefan Stoll; Florian Wetzel; Michele Walters

1. Political commitment and policy instruments to halt biodiversity loss require robust data and a diverse indicator set to monitor and report on biodiversity trends. Gaps in data availability and narrow-based indicator sets are significant information barriers to fulfilling these needs. 2. In this paper, the reporting requirements of seven global or European biodiversity policy instruments were reviewed using the list of Essential Biodiversity Variables (EBVs) as an analytical framework. The reporting requirements for the most comprehensive policy instrument, the United Nations Strategic Plan for Biodiversity 2011-2020, were compared with the indicator set actually used for its reporting, to identify current information gaps. To explore the extent to which identified gaps could be bridged, the potential contribution of data mobilization, modelling and further processing of existing data was assessed. 3. The information gaps identified demonstrate that decision-makers arc currently constrained by the lack of data and indicators on changes in the EBV classes Genetic Composition and, to a lesser extent, Species Populations for which data is most often available. Furthermore, the results show that even when there is a requirement for specific information for reporting, the indicators used may not be able to provide all the information, for example current Convention of Biological Diversity indicators provide relatively little information on changes in the Ecosystem Function and Ecosystem Structure classes. This gap could be partly closed by using existing indicators as proxies, whereas additional indicators may be computed based on available data (e.g. for EBVs in the Ecosystem Structure class). However, for the EBV class Genetic Composition, no immediate improvement based on proxies or existing data seems possible. 4. Synthesis and applications. Using Essential Biodiversity Variables (EBVs) as a tool, theory driven comparisons could be made between the biodiversity information gaps in reporting and indicator sets. Analytical properties, such as an identification of which data and indicator (s) are relevant per EBV, will need to be addressed before EBVs can actually become operational and facilitate the integration of data flows for monitoring and reporting. In the meantime, a first analysis shows that existing indicators and available data offer considerable potential for bridging the identified information gaps.


PLOS ONE | 2015

Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants.

Neil Brummitt; Steven P. Bachman; Janine Griffiths-Lee; Maiko Lutz; Justin Moat; Aljos Farjon; John S. Donaldson; Craig Hilton-Taylor; Thomas R. Meagher; Sara Albuquerque; Elina Aletrari; A. Kei Andrews; Guy Atchison; Elisabeth Baloch; Barbara Barlozzini; Alice Brunazzi; Julia Carretero; Marco Celesti; Helen Chadburn; Eduardo Cianfoni; Chris Cockel; Vanessa Coldwell; Benedetta Concetti; Sara Contu; Vicki Crook; Philippa Dyson; Lauren M. Gardiner; Nadia Ghanim; Hannah Greene; Alice Groom

Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed.


PLOS ONE | 2016

Assessing the Cost of Global Biodiversity and Conservation Knowledge

Diego Juffe-Bignoli; Thomas M. Brooks; Stuart H. M. Butchart; R. K. B. Jenkins; Kaia Boe; Michael R. Hoffmann; Ariadne Angulo; Steve P. Bachman; Monika Böhm; Neil Brummitt; Kent E. Carpenter; Pat J. Comer; Neil A. Cox; Annabelle Cuttelod; William Darwall; Moreno Di Marco; Lincoln D. C. Fishpool; Bárbara Goettsch; Melanie Heath; Craig Hilton-Taylor; Jon Hutton; Tim Johnson; Ackbar Joolia; David A. Keith; Penny F. Langhammer; Jennifer Luedtke; Eimear Nic Lughadha; Maiko Lutz; Ian May; Rebecca M. Miller

Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US


Biodiversity and Conservation | 2010

Subpopulations, locations and fragmentation: applying IUCN red list criteria to herbarium specimen data

Malin C. Rivers; Steven P. Bachman; Thomas R. Meagher; Eimear Nic Lughadha; Neil Brummitt

160 million (range: US


Scientific Reports | 2017

Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures

Jean-Baptiste Mihoub; Klaus Henle; Nicolas Titeux; Lluís Brotons; Neil Brummitt; Dirk S. Schmeller

116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US


Biological Reviews | 2018

A suite of essential biodiversity variables for detecting critical biodiversity change

Dirk S. Schmeller; Lauren Weatherdon; Adeline Loyau; Alberte Bondeau; Lluís Brotons; Neil Brummitt; Ilse R. Geijzendorffer; Peter Haase; Mathias Kuemmerlen; Corinne S. Martin; Jean-Baptiste Mihoub; Duccio Rocchini; Hannu Saarenmaa; Stefan Stoll; Eugenie C. Regan

14 million (range US

Collaboration


Dive into the Neil Brummitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayne Belnap

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Monika Böhm

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Haase

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge