Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil C. Williams is active.

Publication


Featured researches published by Neil C. Williams.


Journal of Applied Physiology | 2015

Locomotor muscle fatigue is not critically regulated after prior upper body exercise

Michael A. Johnson; Graham R. Sharpe; Neil C. Williams; Ricci Hannah

This study examined the effects of prior upper body exercise on subsequent high-intensity cycling exercise tolerance and associated changes in neuromuscular function and perceptual responses. Eight men performed three fixed work-rate (85% peak power) cycling tests: 1) to the limit of tolerance (CYC); 2) to the limit of tolerance after prior high-intensity arm-cranking exercise (ARM-CYC); and 3) without prior exercise and for an equal duration as ARM-CYC (ISOTIME). Peripheral fatigue was assessed via changes in potentiated quadriceps twitch force during supramaximal electrical femoral nerve stimulation. Voluntary activation was assessed using twitch interpolation during maximal voluntary contractions. Cycling time during ARM-CYC and ISOTIME (4.33 ± 1.10 min) was 38% shorter than during CYC (7.46 ± 2.79 min) (P < 0.001). Twitch force decreased more after CYC (-38 ± 13%) than ARM-CYC (-26 ± 10%) (P = 0.004) and ISOTIME (-24 ± 10%) (P = 0.003). Voluntary activation was 94 ± 5% at rest and decreased after CYC (89 ± 9%, P = 0.012) and ARM-CYC (91 ± 8%, P = 0.047). Rating of perceived exertion for limb discomfort increased more quickly during cycling in ARM-CYC [1.83 ± 0.46 arbitrary units (AU)/min] than CYC (1.10 ± 0.38 AU/min, P = 0.003) and ISOTIME (1.05 ± 0.43 AU/min, P = 0.002), and this was correlated with the reduced cycling time in ARM-CYC (r = -0.72, P = 0.045). In conclusion, cycling exercise tolerance after prior upper body exercise is potentially mediated by central fatigue and intolerable levels of sensory perception rather than a critical peripheral fatigue limit.


Journal of The International Society of Sports Nutrition | 2010

Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged load carriage

Sam D. Blacker; Neil C. Williams; Joanne L. Fallowfield; James Bilzon; Mark E. T. Willems

BackgroundThis study examined the effect of carbohydrate and whey protein supplements on recovery of neuromuscular function after prolonged load carriage.MethodsTen male participants (body mass: 81.5 ± 10.5 kg, age: 28 ± 9 years, O2max: 55.0 ± 5.5 ml·kg-1·min-1) completed three treadmill walking tests (2 hr, 6.5 km·h-1), carrying a 25 kg backpack consuming 500 ml of either: (1) Placebo (flavoured water) [PLA], (2) 6.4% Carbohydrate Solution [CHO] or (3) 7.0% Whey Protein Solution [PRO]. For three days after load carriage, participants consumed two 500 ml supplement boluses. Muscle performance was measured before and at 0, 24, 48 and 72 h after load carriage, during voluntary and electrically stimulated contractions.ResultsIsometric knee extension force decreased immediately after load carriage with no difference between conditions. During recovery, isometric force returned to pre-exercise values at 48 h for CHO and PRO but at 72 h for PLA. Voluntary activation decreased immediately after load carriage and returned to pre-exercise values at 24 h in all conditions (P = 0.086). During recovery, there were no differences between conditions for the change in isokinetic peak torque. Following reductions immediately after load carriage, knee extensor and flexor peak torque (60°·s-1) recovered to pre-exercise values at 72 h. Trunk extensor and flexor peak torque (15°·s-1) recovered to pre-exercise values at 24 h (P = 0.091) and 48 h (P = 0.177), respectively.ConclusionRecovery of neuromuscular function after prolonged load carriage is improved with either carbohydrate or whey protein supplementation for isometric contractions but not for isokinetic contractions.


British Journal of Nutrition | 2016

A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation

Neil C. Williams; Michael A. Johnson; Dominick Shaw; Ian Spendlove; Jelena Vulevic; Graham R. Sharpe; Kirsty A. Hunter

Gut microbes have a substantial influence on systemic immune function and allergic sensitisation. Manipulation of the gut microbiome through prebiotics may provide a potential strategy to influence the immunopathology of asthma. This study investigated the effects of prebiotic Bimuno-galactooligosaccharide (B-GOS) supplementation on hyperpnoea-induced bronchoconstriction (HIB), a surrogate for exercise-induced bronchoconstriction, and airway inflammation. A total of ten adults with asthma and HIB and eight controls without asthma were randomised to receive 5·5 g/d of either B-GOS or placebo for 3 weeks separated by a 2-week washout period. The peak fall in forced expiratory volume in 1 s (FEV1) following eucapnic voluntary hyperpnoea (EVH) defined HIB severity. Markers of airway inflammation were measured at baseline and after EVH. Pulmonary function remained unchanged in the control group. In the HIB group, the peak post-EVH fall in FEV1 at day 0 (-880 (sd 480) ml) was unchanged after placebo, but was attenuated by 40 % (-940 (sd 460) v. -570 (sd 310) ml, P=0·004) after B-GOS. In the HIB group, B-GOS reduced baseline chemokine CC ligand 17 (399 (sd 140) v. 323 (sd 144) pg/ml, P=0·005) and TNF-α (2·68 (sd 0·98) v. 2·18 (sd 0·59) pg/ml, P=0·040) and abolished the EVH-induced 29 % increase in TNF-α. Baseline C-reactive protein was reduced following B-GOS in HIB (2·46 (sd 1·14) v. 1·44 (sd 0·41) mg/l, P=0·015) and control (2·16 (sd 1·02) v. 1·47 (sd 0·33) mg/l, P=0·050) groups. Chemokine CC ligand 11 and fraction of exhaled nitric oxide remained unchanged. B-GOS supplementation attenuated airway hyper-responsiveness with concomitant reductions in markers of airway inflammation associated with HIB.


Respiratory Medicine | 2015

Reproducibility of the bronchoconstrictive response to eucapnic voluntary hyperpnoea

Neil C. Williams; Michael A. Johnson; Kirsty A. Hunter; Graham R. Sharpe

BACKGROUND Eucapnic voluntary hyperpnoea (EVH) is considered an effective bronchoprovocation challenge for identifying exercise-induced bronchoconstriction (EIB). However, the reproducibility of the hyperpnoea-induced bronchoconstriction (HIB) response elicited by EVH remains unknown and was therefore the focus of this study. METHODS Two cohorts of 16 physically active males (each cohort comprised 8 controls and 8 with physician diagnosis of asthma) participated in two studies of the short- and long-term reproducibility of the bronchoconstrictive response to an EVH test with dry air. EVH was performed on days 0, 7, 14, and 21 (short-term study), and 0, 35, and 70 (long-term study). HIB was diagnosed by a ≥10% fall in forced expiratory volume in 1 s (FEV1) after EVH. RESULTS On day 0 of the short-term study, FEV1 fell by 2 ± 1% (P < 0.05) and 27 ± 18% (P < 0.01) from pre-to post-EVH in control and HIB-positive groups respectively. The post-EVH fall in FEV1 did not differ across the short-term study test days. In the HIB-positive group, the day-to-day coefficient of variation, reproducibility, and smallest meaningful change for the fall in FEV1 were 12%, 328 mL, and 164 mL, respectively. On day 0 of the long-term study, FEV1 fell by 2 ± 2% and 25 ± 18% (P < 0.01) after EVH in control and HIB-positive groups respectively. The post-EVH fall in FEV1 did not differ across the long-term study test days. In the HIB-positive group, the day-to-day coefficient of variation, reproducibility, and smallest meaningful change for the fall in FEV1 were 10%, 196 mL, and 98 mL respectively. CONCLUSION The EVH test elicits a reproducible bronchoconstrictive response in physically active males with physician diagnosed asthma. These data thus support the clinical utility of the EVH test for EIB screening and monitoring.


Journal of Applied Physiology | 2013

The effects of inspiratory muscle training on plasma interleukin-6 concentration during cycling exercise and a volitional mimic of the exercise hyperpnea

Dean E. Mills; Michael A. Johnson; Martin J. McPhilimey; Neil C. Williams; Javier T. Gonzalez; Yvonne Barnett; Graham R. Sharpe

It is unknown whether the respiratory muscles contribute to exercise-induced increases in plasma interleukin-6 (IL-6) concentration, if this is related to diaphragm fatigue, and whether inspiratory muscle training (IMT) attenuates the plasma IL-6 response to whole body exercise and/or a volitional mimic of the exercise hyperpnea. Twelve healthy males were divided equally into an IMT or placebo (PLA) group, and before and after a 6-wk intervention they undertook, on separate days, 1 h of 1) passive rest, 2) cycling exercise at estimated maximal lactate steady state power (EX), and 3) volitional hyperpnea at rest, which mimicked the breathing and respiratory muscle recruitment patterns achieved during EX (HYPEX). Plasma IL-6 concentration remained unchanged during passive rest. The plasma IL-6 response to EX was reduced following IMT (main effect of intervention, P = 0.039) but not PLA (P = 0.272). Plasma IL-6 concentration increased during HYPEX (main effect of time, P < 0.01) and was unchanged postintervention. There was no evidence of diaphragm fatigue (measured by phrenic nerve stimulation) following each trial. In conclusion, plasma IL-6 concentration is increased during EX and HYPEX and this occurred in the absence of diaphragm fatigue. Furthermore, IMT reduced the plasma IL-6 response to EX but not HYPEX. These findings suggest that the respiratory muscles contribute to exercise-induced increases in plasma IL-6 concentration in the absence of diaphragm fatigue and that IMT can reduce the magnitude of the response to exercise but not a volitional mimic of the exercise hyperpnea.


British Journal of Nutrition | 2017

Comparable reductions in hyperpnoea-induced bronchoconstriction and markers of airway inflammation after supplementation with 6·2 and 3·1 g/d of long-chain n-3 PUFA in adults with asthma

Neil C. Williams; Kirsty A. Hunter; Dominick Shaw; Kim G. Jackson; Graham R. Sharpe; Michael A. Johnson

Although high dose n-3 PUFA supplementation reduces exercise- and hyperpnoea-induced bronchoconstriction (EIB/HIB), there are concurrent issues with cost, compliance and gastrointestinal discomfort. It is thus pertinent to establish the efficacy of lower n-3 PUFA doses. Eight male adults with asthma and HIB and eight controls without asthma were randomly supplemented with two n-3 PUFA doses (6·2 g/d (3·7 g EPA and 2·5 g DHA) and 3·1 g/d (1·8 g EPA and 1·3 g DHA)) and a placebo, each for 21 d followed by 14 d washout. A eucapnic voluntary hyperpnoea (EVH) challenge was performed before and after treatments. Outcome measures remained unchanged in the control group. In the HIB group, the peak fall in forced expiratory volume in 1 s (FEV1) after EVH at day 0 (-1005 (sd 520) ml, -30 (sd 18) %) was unchanged after placebo. The peak fall in FEV1 was similarly reduced from day 0 to day 21 of 6·2 g/d n-3 PUFA (-1000 (sd 460) ml, -29 (sd 17) % v. -690 (sd 460) ml, -20 (sd 15) %) and 3·1 g/d n-3 PUFA (-970 (sd 480) ml, -28 (sd 18) % v. -700 (sd 420) ml, -21 (sd 15) %) (P<0·001). Baseline fraction of exhaled nitric oxide was reduced by 24 % (P=0·020) and 31 % (P=0·018) after 6·2 and 3·1 g/d n-3 PUFA, respectively. Peak increases in 9α, 11β PGF2 after EVH were reduced by 65 % (P=0·009) and 56 % (P=0·041) after 6·2 and 3·1 g/d n-3 PUFA, respectively. In conclusion, 3·1 g/d n-3 PUFA supplementation attenuated HIB and markers of airway inflammation to a similar extent as a higher dose. Lower doses of n-3 PUFA thus represent a potentially beneficial adjunct treatment for adults with asthma and EIB.


Journal of Applied Physiology | 2014

Influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training on the plasma cytokine response to maximum sustainable voluntary ventilation

Dean E. Mills; Michael A. Johnson; Martin J. McPhilimey; Neil C. Williams; Javier T. Gonzalez; Yvonne Barnett; Graham R. Sharpe

The influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training (IMT) on the cytokine response to maximum sustainable voluntary ventilation (MSVV) is unknown. Twelve healthy males were divided equally into an IMT or placebo (PLA) group, and before and after a 6-wk intervention they undertook, on separate days, 1 h of (1) passive rest and (2) MSVV, whereby participants undertook volitional hyperpnea at rest that mimicked the breathing and respiratory muscle recruitment patterns commensurate with heavy cycling exercise. Plasma cytokines remained unchanged during passive rest. There was a main effect of time (P < 0.01) for plasma interleukin-1β (IL-1β) and interleukin-6 (IL-6) concentrations and a strong trend (P = 0.067) for plasma interleukin-1 receptor antagonist concentration during MSVV. Plasma IL-6 concentration was reduced after IMT by 27 ± 18% (main effect of intervention, P = 0.029), whereas there was no change after PLA (P = 0.753). There was no increase in a systemic marker of oxidative stress [DNA damage in peripheral blood mononuclear cells (PBMC)], and diaphragm fatigue was not related to the increases in plasma IL-1β and IL-6 concentrations. A dose-response relationship was observed between respiratory muscle work and minute ventilation and increases in plasma IL-6 concentration. In conclusion, increases in plasma IL-1β and IL-6 concentrations during MSVV were not due to diaphragm fatigue or DNA damage in PBMC. Increases in plasma IL-6 concentration during MSVV are attenuated following IMT, and the plasma IL-6 response is dependent upon the level of respiratory muscle work and minute ventilation.


European Journal of Sport Science | 2018

Immune nutrition and exercise: Narrative review and practical recommendations

Neil C. Williams; Sophie C. Killer; Ida S. Svendsen; Arwel W Jones

Abstract Evidence suggests that periods of heavy intense training can result in impaired immune cell function, and whether this leaves elite athletes at greater risk of infections and upper respiratory symptoms (URS) is still debated. There is some evidence that episodes of URS do cluster around important periods of competition and intense periods of training. Since reducing URS, primarily from an infectious origin, may have implications for performance, a large amount of research has focused on nutritional strategies to improve immune function at rest and in response to exercise. Although there is some convincing evidence that meeting requirements of high intakes in carbohydrate and protein and avoiding deficiencies in nutrients such as vitamin D and antioxidants is integral for optimal immune health, well-powered randomised controlled trials reporting improvements in URS beyond such intakes are lacking. Consequently, there is a need to first understand whether the nutritional practices adopted by elite athletes increases their risk of URS. Second, promising evidence in support of efficacy and mechanisms of immune-enhancing nutritional supplements (probiotics, bovine colostrum) on URS needs to be followed up with more randomised controlled trials in elite athletes with sufficient participant numbers and rigorous procedures with clinically relevant outcome measures of immunity.


Journal of Applied Physiology | 2015

Reply to Broxterman, Richardson, and Amann

Michael A. Johnson; Graham R. Sharpe; Neil C. Williams; Ricci Hannah

to the editor: We thank Broxterman and colleagues ([2][1]) for their comments regarding our recent work on the effects of prior upper body exercise on subsequent cycling exercise tolerance and associated changes in neuromuscular function and perceptual responses ([4][2]). Previous studies suggested


European Journal of Applied Physiology | 2011

The effect of a carbohydrate beverage on the physiological responses during prolonged load carriage

Sam D. Blacker; Neil C. Williams; Joanne L. Fallowfield; Mark E. T. Willems

Collaboration


Dive into the Neil C. Williams's collaboration.

Top Co-Authors

Avatar

Michael A. Johnson

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Graham R. Sharpe

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Kirsty A. Hunter

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvonne Barnett

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Dean E. Mills

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominick Shaw

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Dean E. Mills

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Ian Spendlove

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge