Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil D. Young is active.

Publication


Featured researches published by Neil D. Young.


Nature Genetics | 2012

Whole-genome sequence of Schistosoma haematobium

Neil D. Young; Aaron R. Jex; Bo Li; Shiping Liu; Linfeng Yang; Zijun Xiong; Yingrui Li; Cinzia Cantacessi; Ross S. Hall; Xun Xu; Fangyuan Chen; Xuan Wu; Adhemar Zerlotini; Guilherme Oliveira; Andreas Hofmann; Guojie Zhang; Xiaodong Fang; Yi Kang; Bronwyn E. Campbell; Alex Loukas; Shoba Ranganathan; David Rollinson; Gabriel Rinaldi; Paul J. Brindley; Huanming Yang; Jun Wang; Jian Wang; Robin B. Gasser

Schistosomiasis is a neglected tropical disease caused by blood flukes (genus Schistosoma; schistosomes) and affecting 200 million people worldwide. No vaccines are available, and treatment relies on one drug, praziquantel. Schistosoma haematobium has come into the spotlight as a major cause of urogenital disease, as an agent linked to bladder cancer and as a predisposing factor for HIV/AIDS. The parasite is transmitted to humans from freshwater snails. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall to elicit chronic immune-mediated disease and induce squamous cell carcinoma. Here we sequenced the 385-Mb genome of S. haematobium using Illumina-based technology at 74-fold coverage and compared it to sequences from related parasites. We included genome annotation based on function, gene ontology, networking and pathway mapping. This genome now provides an unprecedented resource for many fundamental research areas and shows great promise for the design of new disease interventions.


Nature | 2011

Ascaris suum draft genome

Aaron R. Jex; Shiping Liu; Bo Li; Neil D. Young; Ross S. Hall; Yingrui Li; Linfeng Yang; Na Zeng; Xun Xu; Zijun Xiong; Fangyuan Chen; Xuan Wu; Guojie Zhang; Xiaodong Fang; Yi Kang; Garry A. Anderson; Todd W. Harris; Bronwyn E. Campbell; Johnny Vlaminck; Tao Wang; Cinzia Cantacessi; Erich M. Schwarz; Shoba Ranganathan; Peter Geldhof; Peter Nejsum; Paul W. Sternberg; Huanming Yang; Jun Wang; Jian Wang; Robin B. Gasser

Parasitic diseases have a devastating, long-term impact on human health, welfare and food production worldwide. More than two billion people are infected with geohelminths, including the roundworms Ascaris (common roundworm), Necator and Ancylostoma (hookworms), and Trichuris (whipworm), mainly in developing or impoverished nations of Asia, Africa and Latin America. In humans, the diseases caused by these parasites result in about 135,000 deaths annually, with a global burden comparable with that of malaria or tuberculosis in disability-adjusted life years. Ascaris alone infects around 1.2 billion people and, in children, causes nutritional deficiency, impaired physical and cognitive development and, in severe cases, death. Ascaris also causes major production losses in pigs owing to reduced growth, failure to thrive and mortality. The Ascaris–swine model makes it possible to study the parasite, its relationship with the host, and ascariasis at the molecular level. To enable such molecular studies, we report the 273 megabase draft genome of Ascaris suum and compare it with other nematode genomes. This genome has low repeat content (4.4%) and encodes about 18,500 protein-coding genes. Notably, the A. suum secretome (about 750 molecules) is rich in peptidases linked to the penetration and degradation of host tissues, and an assemblage of molecules likely to modulate or evade host immune responses. This genome provides a comprehensive resource to the scientific community and underpins the development of new and urgently needed interventions (drugs, vaccines and diagnostic tests) against ascariasis and other nematodiases.


PLOS Neglected Tropical Diseases | 2010

Unlocking the Transcriptomes of Two Carcinogenic Parasites, Clonorchis sinensis and Opisthorchis viverrini

Neil D. Young; Bronwyn E. Campbell; Ross S. Hall; Aaron R. Jex; Cinzia Cantacessi; Thewarach Laha; Woon-Mok Sohn; Banchob Sripa; Alex Loukas; Paul J. Brindley; Robin B. Gasser

The two parasitic trematodes, Clonorchis sinensis and Opisthorchis viverrini, have a major impact on the health of tens of millions of humans throughout Asia. The greatest impact is through the malignant cancer ( = cholangiocarcinoma) that these parasites induce in chronically infected people. Therefore, both C. sinensis and O. viverrini have been classified by the World Health Organization (WHO) as Group 1 carcinogens. Despite their impact, little is known about these parasites and their interplay with the host at the molecular level. Recent advances in genomics and bioinformatics provide unique opportunities to gain improved insights into the biology of parasites as well as their relationships with their hosts at the molecular level. The present study elucidates the transcriptomes of C. sinensis and O. viverrini using a platform based on next-generation (high throughput) sequencing and advanced in silico analyses. From 500,000 sequences, >50,000 sequences were assembled for each species and categorized as biologically relevant based on homology searches, gene ontology and/or pathway mapping. The results of the present study could assist in defining molecules that are essential for the development, reproduction and survival of liver flukes and/or that are linked to the development of cholangiocarcinoma. This study also lays a foundation for future genomic and proteomic research of C. sinensis and O. viverrini and the cancers that they are known to induce, as well as novel intervention strategies.


Genome Biology | 2013

The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus

Erich M. Schwarz; Pasi K. Korhonen; Bronwyn E. Campbell; Neil D. Young; Aaron R. Jex; Abdul Jabbar; Ross S. Hall; Alinda Mondal; Adina Howe; Jason Pell; Andreas Hofmann; Peter R. Boag; Xing-Quan Zhu; T. Ryan Gregory; Alex Loukas; Brian A. Williams; Igor Antoshechkin; C. Titus Brown; Paul W. Sternberg; Robin B. Gasser

BackgroundThe barbers pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites.ResultsThe draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasites gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules.ConclusionsThe draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders.


Nature Communications | 2014

The Opisthorchis viverrini genome provides insights into life in the bile duct

Neil D. Young; Niranjan Nagarajan; Suling Joyce Lin; Pasi K. Korhonen; Aaron R. Jex; Ross S. Hall; Helena Safavi-Hemami; Worasak Kaewkong; Denis Bertrand; Song Gao; Qihui Seet; Sopit Wongkham; Bin Tean Teh; Chaisiri Wongkham; Pewpan M. Intapan; Wanchai Maleewong; Xinhua Yang; Min Hu; Zuo Wang; Andreas Hofmann; Paul W. Sternberg; Patrick Tan; Jun Wang; Robin B. Gasser

Opisthorchiasis is a neglected, tropical disease caused by the carcinogenic Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is linked to malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia. No vaccine is available, and only one drug (praziquantel) is used against the parasite. Little is known about O. viverrini biology and the diseases that it causes. Here we characterize the draft genome (634.5 Mb) and transcriptomes of O. viverrini, elucidate how this fluke survives in the hostile environment within the bile duct and show that metabolic pathways in the parasite are highly adapted to a lipid-rich diet from bile and/or cholangiocytes. We also provide additional evidence that O. viverrini and other flukes secrete proteins that directly modulate host cell proliferation. Our molecular resources now underpin profound explorations of opisthorchiasis/CCA and the design of new interventions.


PLOS Neglected Tropical Diseases | 2010

Massively parallel sequencing and analysis of the Necator americanus transcriptome

Cinzia Cantacessi; Makedonka Mitreva; Aaron R. Jex; Neil D. Young; Bronwyn E. Campbell; Ross S. Hall; Maria A. Doyle; Stuart A. Ralph; Élida Mara Leite Rabelo; Shoba Ranganathan; Paul W. Sternberg; Alex Loukas; Robin B. Gasser

BACKGROUND The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses. METHODOLOGY/PRINCIPAL FINDINGS A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%); most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins) were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins) or amino acid metabolism (e.g., asparagine t-RNA synthetase). CONCLUSIONS This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human hookworm, A. duodenale, for both fundamental and applied purposes, including the prevalidation of anti-hookworm drug targets.


Diseases of Aquatic Organisms | 2008

Neoparamoeba perurans is a cosmopolitan aetiological agent of amoebic gill disease

Neil D. Young; Iva Dyková; Kevin Snekvik; Bf Nowak; Rn Morrison

Previously we described a new member of the Neoparamoeba genus, N. perurans, and showed that it is an agent of amoebic gill disease (AGD) of Atlantic salmon Salmo salar cultured in southeast Tasmania, Australia. Given the broad distribution of cases of AGD, we were interested in extending our studies to epizootics in farmed fish from other sites around the world. Oligonucleotide probes that hybridise with the 18S rRNA of N. perurans, N. branchiphila or N. pemaquidensis were used to examine archival samples of AGD in Tasmania as well as samples obtained from 4 host fish species cultured across 6 countries. In archival samples, N. perurans was the only detectable amoeba, confirming that it has been the predominant aetiological agent of AGD in Tasmania since epizootics were first reported. N. perurans was also the exclusive agent of AGD in 4 host species across 6 countries. Together, these data show that N. perurans is a cosmopolitan agent of AGD and, therefore, of significance to the global mariculture industry.


PLOS Neglected Tropical Diseases | 2011

A Portrait of the Transcriptome of the Neglected Trematode, Fasciola gigantica—Biological and Biotechnological Implications

Neil D. Young; Aaron R. Jex; Cinzia Cantacessi; Ross S. Hall; Bronwyn E. Campbell; Terence W. Spithill; Sirikachorn Tangkawattana; Prasarn Tangkawattana; Thewarach Laha; Robin B. Gasser

Fasciola gigantica (Digenea) is an important foodborne trematode that causes liver fluke disease (fascioliasis) in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin), defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level) based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite.


Nucleic Acids Research | 2010

A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing

Cinzia Cantacessi; Aaron R. Jex; Ross S. Hall; Neil D. Young; Bronwyn E. Campbell; Anja Joachim; Matthew J. Nolan; Sahar Abubucker; Paul W. Sternberg; Shoba Ranganathan; Makedonka Mitreva; Robin B. Gasser

Transcriptomics (at the level of single cells, tissues and/or whole organisms) underpins many fields of biomedical science, from understanding the basic cellular function in model organisms, to the elucidation of the biological events that govern the development and progression of human diseases, and the exploration of the mechanisms of survival, drug-resistance and virulence of pathogens. Next-generation sequencing (NGS) technologies are contributing to a massive expansion of transcriptomics in all fields and are reducing the cost, time and performance barriers presented by conventional approaches. However, bioinformatic tools for the analysis of the sequence data sets produced by these technologies can be daunting to researchers with limited or no expertise in bioinformatics. Here, we constructed a semi-automated, bioinformatic workflow system, and critically evaluated it for the analysis and annotation of large-scale sequence data sets generated by NGS. We demonstrated its utility for the exploration of differences in the transcriptomes among various stages and both sexes of an economically important parasitic worm (Oesophagostomum dentatum) as well as the prediction and prioritization of essential molecules (including GTPases, protein kinases and phosphatases) as novel drug target candidates. This workflow system provides a practical tool for the assembly, annotation and analysis of NGS data sets, also to researchers with a limited bioinformatic expertise. The custom-written Perl, Python and Unix shell computer scripts used can be readily modified or adapted to suit many different applications. This system is now utilized routinely for the analysis of data sets from pathogens of major socio-economic importance and can, in principle, be applied to transcriptomics data sets from any organism.


Nature Genetics | 2014

Genome and transcriptome of the porcine whipworm Trichuris suis

Aaron R. Jex; Peter Nejsum; Erich M. Schwarz; Li Hu; Neil D. Young; Ross S. Hall; Pasi K. Korhonen; Shengguang Liao; Stig M. Thamsborg; Jinquan Xia; Pengwei Xu; Shaowei Wang; Jean-Pierre Y. Scheerlinck; Andreas Hofmann; Paul W. Sternberg; Jun Wang; Robin B. Gasser

Trichuris (whipworm) infects 1 billion people worldwide and causes a disease (trichuriasis) that results in major socioeconomic losses in both humans and pigs. Trichuriasis relates to an inflammation of the large intestine manifested in bloody diarrhea, and chronic disease can cause malnourishment and stunting in children. Paradoxically, Trichuris of pigs has shown substantial promise as a treatment for human autoimmune disorders, including inflammatory bowel disease (IBD) and multiple sclerosis. Here we report whole-genome sequencing at ∼140-fold coverage of adult male and female T. suis and ∼80-Mb draft assemblies. We explore stage-, sex- and tissue-specific transcription of mRNAs and small noncoding RNAs.

Collaboration


Dive into the Neil D. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron R. Jex

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Ross S. Hall

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul W. Sternberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cinzia Cantacessi

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bf Nowak

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Rn Morrison

University of Tasmania

View shared research outputs
Researchain Logo
Decentralizing Knowledge