Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil Desai is active.

Publication


Featured researches published by Neil Desai.


Journal of Clinical Oncology | 2005

Phase III Trial of Nanoparticle Albumin-Bound Paclitaxel Compared With Polyethylated Castor Oil–Based Paclitaxel in Women With Breast Cancer

William J. Gradishar; Sergei Tjulandin; Neville Davidson; Heather Shaw; Neil Desai; Paul Bhar; Mike Hawkins; Joyce O'Shaughnessy

PURPOSE ABI-007, the first biologically interactive albumin-bound paclitaxel in a nanameter particle, free of solvents, was compared with polyethylated castor oil-based standard paclitaxel in patients with metastatic breast cancer (MBC). This phase III study was performed to confirm preclinical studies demonstrating superior efficacy and reduced toxicity of ABI-007 compared with standard paclitaxel. PATIENTS AND METHODS Patients were randomly assigned to 3-week cycles of either ABI-007 260 mg/m(2) intravenously without premedication (n = 229) or standard paclitaxel 175 mg/m(2) intravenously with premedication (n = 225). RESULTS ABI-007 demonstrated significantly higher response rates compared with standard paclitaxel (33% v 19%, respectively; P = .001) and significantly longer time to tumor progression (23.0 v 16.9 weeks, respectively; hazard ratio = 0.75; P = .006). The incidence of grade 4 neutropenia was significantly lower for ABI-007 compared with standard paclitaxel (9% v 22%, respectively; P < .001) despite a 49% higher paclitaxel dose. Febrile neutropenia was uncommon (< 2%), and the incidence did not differ between the two study arms. Grade 3 sensory neuropathy was more common in the ABI-007 arm than in the standard paclitaxel arm (10% v 2%, respectively; P < .001) but was easily managed and improved rapidly (median, 22 days). No hypersensitivity reactions occurred with ABI-007 despite the absence of premedication and shorter administration time. CONCLUSION ABI-007 demonstrated greater efficacy and a favorable safety profile compared with standard paclitaxel in this patient population. The improved therapeutic index and elimination of corticosteroid premedication required for solvent-based taxanes make the novel albumin-bound paclitaxel ABI-007 an important advance in the treatment of MBC.


Clinical Cancer Research | 2006

Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel.

Neil Desai; Vuong Trieu; Zhiwen Yao; Leslie Louie; Sherry Ci; Andrew Yang; Chunlin Tao; Tapas De; Bridget Beals; Donald J. Dykes; Patricia E. Noker; Rosie Yao; Elizabeth Labao; Mike Hawkins; Patrick Soon-Shiong

ABI-007, an albumin-bound, 130-nm particle form of paclitaxel, was developed to avoid Cremophor/ethanol-associated toxicities in Cremophor-based paclitaxel (Taxol) and to exploit albumin receptor-mediated endothelial transport. We studied the antitumor activity, intratumoral paclitaxel accumulation, and endothelial transport for ABI-007 and Cremophor-based paclitaxel. Antitumor activity and mortality were assessed in nude mice bearing human tumor xenografts [lung (H522), breast (MX-1), ovarian (SK-OV-3), prostate (PC-3), and colon (HT29)] treated with ABI-007 or Cremophor-based paclitaxel. Intratumoral paclitaxel concentrations (MX-1-tumored mice) were compared for radiolabeled ABI-007 and Cremophor-based paclitaxel. In vitro endothelial transcytosis and Cremophor inhibition of paclitaxel binding to cells and albumin was compared for ABI-007 and Cremophor-based paclitaxel. Both ABI-007 and Cremophor-based paclitaxel caused tumor regression and prolonged survival; the order of sensitivity was lung > breast congruent with ovary > prostate > colon. The LD(50) and maximum tolerated dose for ABI-007 and Cremophor-based paclitaxel were 47 and 30 mg/kg/d and 30 and 13.4 mg/kg/d, respectively. At equitoxic dose, the ABI-007-treated groups showed more complete regressions, longer time to recurrence, longer doubling time, and prolonged survival. At equal dose, tumor paclitaxel area under the curve was 33% higher for ABI-007 versus Cremophor-based paclitaxel, indicating more effective intratumoral accumulation of ABI-007. Endothelial binding and transcytosis of paclitaxel were markedly higher for ABI-007 versus Cremophor-based paclitaxel, and this difference was abrogated by a known inhibitor of endothelial gp60 receptor/caveolar transport. In addition, Cremophor was found to inhibit binding of paclitaxel to endothelial cells and albumin. Enhanced endothelial cell binding and transcytosis for ABI-007 and inhibition by Cremophor in Cremophor-based paclitaxel may account in part for the greater efficacy and intratumor delivery of ABI-007.


Advanced Drug Delivery Reviews | 2008

Protein nanoparticles as drug carriers in clinical medicine

Michael J. Hawkins; Patrick Soon-Shiong; Neil Desai

Solvent-based delivery vehicles for chemotherapy agents have been instrumental in providing a means for hydrophobic agents to be administered intravenously. These solvents, however, have been associated with serious and dose-limiting toxicities. Solvent-based formulations of taxanes, a highly active class of cytotoxic agents, are associated with hypersensitivity reactions, neutropenia, and neuropathy. Nanoparticle technology utilizing the human protein albumin exploits natural pathways to selectively deliver larger amounts of drug to tumors while avoiding some of the toxicities of solvent-based formulations. 130 nM albumin-bound (nab) paclitaxel (nab-paclitaxel; Abraxane) was recently approved for use in patients with metastatic breast cancer who have failed combination therapy. In a randomized, phase III study in metastatic breast cancer, nab-paclitaxel was found to have improved efficacy and safety compared with conventional, solvent-based paclitaxel. Preliminary data also suggest roles for nab-paclitaxel as a single agent and in combination therapy for first-line treatment of metastatic breast cancer as well as in other solid tumors, including non-small-cell lung cancer, ovarian cancer, and malignant melanoma. The nab technology promises to have broad utility in cancer therapy, and clinical trials are underway using nab formulations of other water-insoluble anticancer agents such as docetaxel and rapamycin.


Clinical Cancer Research | 2005

Comparative Preclinical and Clinical Pharmacokinetics of a Cremophor-Free, Nanoparticle Albumin-Bound Paclitaxel (ABI-007) and Paclitaxel Formulated in Cremophor (Taxol)

Sparreboom A; Scripture Cd; Trieu; Williams Pj; De T; Yang A; Beals B; Figg Wd; Hawkins M; Neil Desai

Purpose: To compare the preclinical and clinical pharmacokinetic properties of paclitaxel formulated as a Cremophor-free, albumin-bound nanoparticle (ABI-007) and formulated in Cremophor-ethanol (Taxol). Experimental Design: ABI-007 and Taxol were given i.v. to Harlan Sprague-Dawley male rats to determine pharmacokinetic and drug disposition. Paclitaxel pharmacokinetic properties also were assessed in 27 patients with advanced solid tumors who were randomly assigned to treatment with ABI-007 (260 mg/m2, 30 minutes; n = 14) or Taxol (175 mg/m2, 3 hours; n = 13), with cycles repeated every 3 weeks. Results: The volume of distribution at steady state and clearance for paclitaxel formulated as Cremophor-free nanoparticle ABI-007 were significantly greater than those for paclitaxel formulated with Cremophor (Taxol) in rats. Fecal excretion was the main elimination pathway with both formulations. Consistent with the preclinical data, paclitaxel clearance and volume of distribution were significantly higher for ABI-007 than for Taxol in humans [21.13 versus 14.76 L/h/m2 (P = 0.048) and 663.8 versus 433.4 L/m2 (P = 0.040), respectively]. Conclusions: Paclitaxel formulated as ABI-007 differs from paclitaxel formulated as Taxol, with a higher plasma clearance and a larger volume of distribution. This finding is consistent with the absence of paclitaxel-sequestering Cremophor micelles after administration of ABI-007. This unique property of ABI-007 could be important for its therapeutic effectiveness.


Journal of Clinical Oncology | 2005

Phase I and Pharmacokinetics Trial of ABI-007, a Novel Nanoparticle Formulation of Paclitaxel in Patients With Advanced Nonhematologic Malignancies

David W. Nyman; Kimberley J. Campbell; Evan M. Hersh; Kristen Long; Kelly Richardson; Vuong Trieu; Neil Desai; Michael J. Hawkins; Daniel D. Von Hoff

PURPOSE ABI-007 is a novel solvent-free, albumin-bound, 130-nm particle formulation of paclitaxel designed to avoid solvent-related toxicities and to deliver paclitaxel to tumors via molecular pathways involving an endothelial cell-surface albumin receptor (gp60) and an albumin-binding protein expressed by tumor cells and secreted into the tumor interstitium (secreted protein acid rich in cysteine). This study determined the maximum-tolerated dose (MTD) of ABI-007 monotherapy administered weekly (three weekly doses, repeated every 4 weeks) and assessed the pharmacokinetics of paclitaxel administered as ABI-007. PATIENTS AND METHODS Patients with advanced nonhematologic malignancies received ABI-007 without premedication at dose levels from 80 to 200 mg/m(2) as a 30-minute intravenous infusion once a week for 3 weeks, followed by 1 week of rest (one cycle). RESULTS Thirty-nine patients were treated with an average of five cycles of ABI-007; 33% of patients received > or = six cycles of treatment. MTDs for heavily and lightly pretreated patients were 100 and 150 mg/m(2), respectively; and the dose-limiting toxicities were grade 4 neutropenia and grade 3 peripheral neuropathy, respectively. Maximum paclitaxel concentration and area under the curve increased linearly with dose. Dose-dependent changes in plasma clearance did not occur. Partial responses were observed in five patients with breast, lung, and ovarian cancers, all of whom had previously been treated with paclitaxel containing polyoxyethylated castor oil in the formulation. CONCLUSION This study demonstrated that weekly ABI-007 can be administered at doses exceeding those typically used for paclitaxel containing polyoxyethylated castor oil. Pharmacokinetics were linear over the dose range studied. Antitumor responses occurred in patients previously treated with paclitaxel containing polyoxyethylated castor oil.


Clinical Cancer Research | 2008

Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel

Erin R. Gardner; William L. Dahut; Charity D. Scripture; Jacquin Jones; Jeanny B. Aragon-Ching; Neil Desai; Michael J. Hawkins; Alex Sparreboom; William D. Figg

Purpose: Abraxane (ABI-007) is a 130-nm albumin-bound (nab) particle formulation of paclitaxel, devoid of any additional excipients. We hypothesized that this change in formulation alters the systemic disposition of paclitaxel compared with conventional solvent-based formulations (sb-paclitaxel; Taxol), and leads to improved tolerability of the drug. Patients and Methods: Patients with malignant solid tumors were randomized to receive the recommended single-agent dose of nab-paclitaxel (260 mg/m2 as a 30-minute infusion) or sb-paclitaxel (175 mg/m2 as a 3-hour infusion). After cycle 1, patients crossed over to the alternate treatment. Pharmacokinetic studies were carried out for the first cycle of sb-paclitaxel and the first two cycles of nab-paclitaxel. Results: Seventeen patients were treated, with 14 receiving at least one cycle each of nab-paclitaxel and sb-paclitaxel. No change in nab-paclitaxel pharmacokinetics was found between the first and second cycles (P = 0.95), suggesting limited intrasubject variability. Total drug exposure was comparable between the two formulations (P = 0.55) despite the dose difference. However, exposure to unbound paclitaxel was significantly higher after nab-paclitaxel administration, due to the increased free fraction (0.063 ± 0.021 versus 0.024 ± 0.009; P < 0.001). Conclusion: This study shows that paclitaxel disposition is subject to considerable variability depending on the formulation used. Because systemic exposure to unbound paclitaxel is likely a driving force behind tumoral uptake, these findings explain, at least in part, previous observations that the administration of nab-paclitaxel is associated with augmented antitumor efficacy compared with solvent-based paclitaxel.


Journal of Clinical Oncology | 2016

Extended Survival and Prognostic Factors for Patients With ALK-Rearranged Non–Small-Cell Lung Cancer and Brain Metastasis

Kimberly L. Johung; Norman Yeh; Neil Desai; Terence M. Williams; Tim Lautenschlaeger; Nils D. Arvold; Matthew S. Ning; Albert Attia; Christine M. Lovly; Sarah B. Goldberg; Kathryn Beal; James B. Yu; Brian D. Kavanagh; Veronica L. Chiang; D. Ross Camidge; Joseph N. Contessa

PURPOSE We performed a multi-institutional study to identify prognostic factors and determine outcomes for patients with ALK-rearranged non-small-cell lung cancer (NSCLC) and brain metastasis. PATIENTS AND METHODS A total of 90 patients with brain metastases from ALK-rearranged NSCLC were identified from six institutions; 84 of 90 patients received radiotherapy to the brain (stereotactic radiosurgery [SRS] or whole-brain radiotherapy [WBRT]), and 86 of 90 received tyrosine kinase inhibitor (TKI) therapy. Estimates for overall (OS) and intracranial progression-free survival were determined and clinical prognostic factors were identified by Cox proportional hazards modeling. RESULTS Median OS after development of brain metastases was 49.5 months (95% CI, 29.0 months to not reached), and median intracranial progression-free survival was 11.9 months (95% CI, 10.1 to 18.2 months). Forty-five percent of patients with follow-up had progressive brain metastases at death, and repeated interventions for brain metastases were common. Absence of extracranial metastases, Karnofsky performance score ≥ 90, and no history of TKIs before development of brain metastases were associated with improved survival (P = .003, < .001, and < .001, respectively), whereas a single brain metastasis or initial treatment with SRS versus WBRT were not (P = .633 and .666, respectively). Prognostic factors significant by multivariable analysis were used to describe four patient groups with 2-year OS estimates of 33%, 59%, 76%, and 100%, respectively (P < .001). CONCLUSION Patients with brain metastases from ALK-rearranged NSCLC treated with radiotherapy (SRS and/or WBRT) and TKIs have prolonged survival, suggesting that interventions to control intracranial disease are critical. The refinement of prognosis for this molecular subtype of NSCLC identifies a population of patients likely to benefit from first-line SRS, close CNS observation, and treatment of emergent CNS disease.


Clinical Cancer Research | 2004

Epidermal growth factor receptor tyrosine kinase inhibition represses cyclin D1 in aerodigestive tract cancers

W. Jeffrey Petty; Konstantin H. Dragnev; Vincent A. Memoli; Yan Ma; Neil Desai; Adrian Biddle; Thomas H. Davis; William C. Nugent; Natalie Memoli; Marta Hamilton; Kenneth K. Iwata; James R. Rigas; Ethan Dmitrovsky

Purpose: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are active in cancer therapy. Mechanisms engaged during these clinical responses need to be determined. We reported previously that epidermal growth factor stimulation markedly increased cyclin D1 protein expression in human bronchial epithelial (HBE) cells, and this was opposed by chemoprevention with all-trans-retinoic acid. The current study sought to determine whether the EGFR TKI erlotinib repressed cyclin D1 protein expression in immortalized HBE cells, lung cancer cell lines, and clinical aerodigestive tract cancers. Experimental Design: The BEAS-2B immortalized HBE cell line was exposed to varying concentrations of erlotinib, and effects on proliferation, cell cycle distribution, G1 cyclin expression, and cyclin D1 reporter activity were measured. Non–small-cell lung cancer cell lines were also evaluated for changes in proliferation and cyclin protein expression after erlotinib treatments. A proof of principle clinical trial was conducted. During this study, patients underwent a 9-day course of erlotinib treatment. Pretreatment and posttreatment tumor biopsies were obtained, and changes in candidate biomarkers were determined by immunostaining. Plasma pharmacokinetics and tumor tissue erlotinib concentrations were measured. Results: Erlotinib, at clinically achievable dosages, repressed BEAS-2B cell growth, triggered G1 arrest, and preferentially reduced cyclin D1 protein expression and transcriptional activation. Erlotinib also preferentially repressed proliferation and cyclin D1 protein expression in responsive, but not resistant, non–small-cell lung cancer cell lines. This occurred in the presence of wild-type EGFR sequence at exons 18, 19, and 21. Five patients were enrolled onto an erlotinib proof of principle clinical trial, and four cases were evaluable. Pharmacokinetic studies established therapeutic erlotinib plasma levels in all patients, but tissue levels exceeding 2 μmol/L were detected in only two cases. Notably, these cases had pathological evidence of response (necrosis) in posttreatment biopsies as compared with pretreatment biopsies. In these cases, marked repression of cyclin D1 and the proliferation marker Ki-67 was detected by immunohistochemical assays. Cases without pathological response to erlotinib did not exhibit changes in cyclin D1 or Ki-67 immunohistochemical expression and had much lower erlotinib tissue levels than did responding cases. Conclusions: Taken together, these in vitro and in vivo findings provide direct evidence for repression of cyclin D1 protein as a surrogate marker of response in aerodigestive tract cancers to erlotinib treatment. These findings also provide a rationale for combining an EGFR TKI with an agent that would cooperatively repress cyclin D1 expression in clinical trials for aerodigestive tract cancer therapy or chemoprevention.


Clinical Cancer Research | 2004

Specific Chemopreventive Agents Trigger Proteasomal Degradation of G 1 Cyclins: Implications for Combination Therapy

Konstantin H. Dragnev; Ian Pitha-Rowe; Yan Ma; W. Jeffrey Petty; David Sekula; Bryan Murphy; Mara H. Rendi; Nanjoo Suh; Neil Desai; Michael B. Sporn; Sarah J. Freemantle; Ethan Dmitrovsky

Purpose: There is a need to identify cancer chemoprevention mechanisms. We reported previously that all-trans-retinoic acid (RA) prevented carcinogenic transformation of BEAS-2B immortalized human bronchial epithelial cells by causing G1 arrest, permitting repair of genomic DNA damage. G1 arrest was triggered by cyclin D1 proteolysis via ubiquitin-dependent degradation. This study investigated which chemopreventive agents activated this degradation program and whether cyclin E was also degraded. Experimental Design: This study examined whether: (a) cyclin E protein was affected by RA treatment; (b) cyclin degradation occurred in derived BEAS-2B-R1 cells that were partially resistant to RA; and (c) other candidate chemopreventive agents caused cyclin degradation. Results: RA treatment triggered degradation of cyclin E protein, and ALLN, a proteasomal inhibitor, inhibited this degradation. Induction of the retinoic acid receptor β, growth suppression, and cyclin degradation were each inhibited in BEAS-2B-R1 cells. Transfection experiments in BEAS-2B cells indicated that RA treatment repressed expression of wild-type cyclin D1 and cyclin E, but ALLN inhibited this degradation. Mutation of threonine 286 stabilized transfected cyclin D1, and mutations of threonines 62 and 380 stabilized transfected cyclin E, despite RA treatment. Specific chemopreventive agents triggered cyclin degradation. Nonclassical retinoids (fenretinide and retinoid X receptor agonists) and a synthetic triterpenoid (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid) each suppressed BEAS-2B growth and activated this degradation program. However, a vitamin D3 analog (RO-24–5531), a cyclooxygenase inhibitor (indomethacin), and a peroxisome proliferator-activated receptor γ agonist (rosiglitazone) each suppressed BEAS-2B growth, but did not cause cyclin degradation. BEAS-2B-R1 cells remained responsive to nonclassical retinoids and to 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid. Conclusions: Specific chemopreventive agents activate cyclin proteolysis. Yet, broad resistance did not occur after acquired resistance to a single agent. This provides a therapeutic rationale for combination chemoprevention with agents activating non-cross-resistant pathways.


Clinical Cancer Research | 2006

Influence of formulation vehicle on metronomic taxane chemotherapy: albumin-bound versus cremophor EL-based paclitaxel.

Sylvia S. W. Ng; Alex Sparreboom; Yuval Shaked; Christina R. Lee; Shan Man; Neil Desai; Patrick Soon-Shiong; William D. Figg; Robert S. Kerbel

Purpose: Low-dose metronomic chemotherapy treatments, especially when combined with ‘dedicated’ antiangiogenic agents, can induce significant antitumor activity without serious toxicity in various preclinical models. It remains unclear, however, whether some cytotoxic drugs are better suited for metronomic regimens than others. Paclitaxel appears to be a strong candidate for metronomic chemotherapy given its ability to inhibit endothelial cell functions relevant to angiogenesis in vitro at extraordinarily low concentrations and broad-spectrum antitumor activity. Clinically relevant concentrations of the formulation vehicle cremophor EL in Taxol, however, were previously reported to nullify the antiangiogenic effect of paclitaxel, the result of which would hamper its usefulness in metronomic regimens. We hypothesized that ABI-007, a cremophor EL–free, albumin-bound, 130-nm form of paclitaxel, could potentially alleviate this problem. Experimental Design: The antiangiogenic activity of ABI-007 was assessed by multiple in vitro assays. The in vivo optimal dose of ABI-007 for metronomic chemotherapy was determined by measuring circulating endothelial progenitors in peripheral blood. The antitumor effects of metronomic and maximum tolerated dose ABI-007 and Taxol were then evaluated and compared in severe combined immunodeficient mice bearing human MDA-MD-231 breast cancer and PC3 prostate cancer xenografts. Results: ABI-007 significantly inhibited rat aortic microvessel outgrowth, human endothelial cell proliferation, and tube formation. The optimal metronomic dose of ABI-007 was determined to be between 3 and 10 mg/kg. Metronomic ABI-007 but not Taxol, significantly suppressed tumor growth in both xenograft models. Furthermore, the antitumor effect of minimally toxic metronomic ABI-007 approximated that of the maximum tolerated dose of Taxol. Conclusions: Our results underscore the influence of formulation vehicles on the selection of cytotoxic drugs for metronomic chemotherapy.

Collaboration


Dive into the Neil Desai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquibul Hannan

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bernard H. Bochner

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David B. Solit

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dean F. Bajorin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hikmat Al-Ahmadie

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan E. Rosenberg

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert D. Timmerman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Aaron Laine

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gopa Iyer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge