Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil M. Burgess is active.

Publication


Featured researches published by Neil M. Burgess.


Environmental Toxicology and Chemistry | 2012

Toxicity of dietary methylmercury to fish: Derivation of ecologically meaningful threshold concentrations

David C. Depew; Niladri Basu; Neil M. Burgess; Linda M. Campbell; Ed W. Devlin; Paul E. Drevnick; Chad R. Hammerschmidt; Cheryl A. Murphy; Mark B. Sandheinrich; James G. Wiener

Threshold concentrations associated with adverse effects of dietary exposure to methylmercury (MeHg) were derived from published results of laboratory studies on a variety of fish species. Adverse effects related to mortality were uncommon, whereas adverse effects related to growth occurred only at dietary MeHg concentrations exceeding 2.5 µg g(-1) wet weight. Adverse effects on behavior of fish had a wide range of effective dietary concentrations, but generally occurred above 0.5 µg g(-1) wet weight. In contrast, effects on reproduction and other subclinical endpoints occurred at dietary concentrations that were much lower (<0.2 µg g(-1) wet wt). Field studies generally lack information on dietary MeHg exposure, yet available data indicate that comparable adverse effects have been observed in wild fish in environments corresponding to high and low MeHg contamination of food webs and are in agreement with the threshold concentrations derived here from laboratory studies. These thresholds indicate that while differences in species sensitivity to MeHg exposure appear considerable, chronic dietary exposure to low concentrations of MeHg may have significant adverse effects on wild fish populations but remain little studied compared to concentrations in mammals or birds.


Environmental Toxicology and Chemistry | 2003

Lead and stable lead isotope ratios in soil, earthworms, and bones of American woodcock (Scolopax minor) from Eastern Canada

Anton M. Scheuhammer; Della E. Bond; Neil M. Burgess; Jean Rodrigue

A study to discriminate among different possible sources of elevated Pb exposure for American woodcock (Scolopax minor) in eastern Canada is described. Undamaged wing bones excised from young-of-the-year woodcock collected from several locations in southern Ontario, southern Quebec, New Brunswick, and Nova Scotia, Canada, along with soil and earthworm (Aporrectodea tuberculata and Lumbricus rubellus) samples from the same sites, were analyzed for total Pb, and stable Pb isotopes. Ignoring six soil samples with high (> 60 microg/g) Pb concentration from the vicinity of Montreal (QC, Canada), the mean soil-Pb concentration for all sites combined was 19 microg/g (dry wt; n = 64), with a mean 206Pb:207Pb ratio of 1.19, values typical for uncontaminated rural soils in eastern North America. In earthworms, Pb concentrations ranged from 2.4 to 865 (microg/g [dry wt], mean = 24 microg/g). Concentrations of Pb in worms and soils were positively correlated (r = 0.71; p < 0.01), and 206Pb:207Pb ratios for worms and soils were also positively correlated (r = 0.54; p < 0.05). However, most young-of-the-year woodcock with high bone-Pb accumulation (> 20 microg/g) had 206Pb:207Pb ratios substantially different from worms and soils sampled from the same areas, even though woodcock feed extensively on soil invertebrates, especially earthworms. The range of 206Pb:207Pb ratios in wing bones of woodcock with elevated Pb exposure was not consistent with exposure to environmental Pb from past gasoline combustion nor Precambrian mining wastes but was consistent with ingestion of spent Pb shotgun pellets.


Ecohealth | 2008

Marine Foraging Birds As Bioindicators of Mercury in the Gulf of Maine

M. Wing Goodale; David C. Evers; Steven E. Mierzykowski; Alexander L. Bond; Neil M. Burgess; Catherine I. Otorowski; Linda J. Welch; C. Scott Hall; Julie C. Ellis; R. Bradford Allen; Anthony W. Diamond; Stephen W. Kress; Robert J. Taylor

From existing databases, we compiled and evaluated 604 total mercury (Hg) levels in the eggs and blood of 17 species of marine foraging birds from 35 Gulf of Maine islands to provide baseline data and to determine the best tissue, age class, and species for future biomonitoring. While mean Hg levels in most species did not exceed adverse effects thresholds, levels in some individual eggs did; for all species arithmetic mean egg Hg levels ranged from 0.04 to 0.62 (μg/g, wet weight). Piscivorous birds had higher Hg levels than invertivores. Leach’s storm-petrel (Oceanodroma leucorhoa), razorbill (Alca torda), and black guillemot (Cepphus grylle) adult blood and egg Hg levels were higher than other species. Our results indicate that adult blood is preferable to chick blood for detecting long-term temporal trends because adult levels are higher and not confounded by metabolic effects. However, since we found that eggs and adult blood are comparable indicators of methylmercury bioavailability, we determined that eggs are the preferred tissue for long-term Hg monitoring because the relative ease in collecting eggs ensures consistent and robust datasets. We suggest specific sampling methods, and based on our results demonstrate that common eider (Somateria mollissima), Leach’s storm-petrel, double-crested cormorant, and black guillemot are the most effective bioindicators of Hg of the Gulf of Maine.


Ecotoxicology | 2003

Biological Effects of Marine PCB Contamination on Black Guillemot Nestlings at Saglek, Labrador: Liver Biomarkers

Zou Zou Kuzyk; Neil M. Burgess; Jason P. Stow; Glen A. Fox

Black guillemots (Cepphus grylle) in Saglek Bay, Labrador have elevated polychlorinated biphenyl (PCB) concentrations due to marine sediment contamination around a former military site. We measured liver biomarkers and ΣPCB concentrations in 31 nestlings from three PCB-exposure groups: Reference group (range: 15–46 ng/g liver, wet wt.), moderately exposed Islands group (24–150 ng/g), and highly exposed Beach group (170–6200 ng/g). Biomarker responses were dose-dependent and in some cases sex-dependent. Livers of female Beach nestlings were enlarged 36% relative to Reference females. In both sexes, Beach nestlings had liver ethoxyresorufin-O-deethylase (EROD) activities elevated 79% and liver retinol concentrations reduced 47%. Retinyl palmitate concentrations were reduced 50% but only among female nestlings. Island nestlings also exhibited EROD induction (57%) and reductions in retinol and retinyl palmitate concentrations (28 and 58%, respectively). Liver lipid content increased with ΣPCBs in both sexes, and correlated with liver mass in males. Malic enzyme activity and porphyrin concentrations showed little association with ΣPCBs. Although similar associations between liver biomarkers and organochlorine exposure in fish-eating birds are well documented, typically exposures involve multiple contaminants and there is uncertainty about specific PCB effects. Our findings indicate that liver biomarkers respond to relatively low PCB exposures (∼73 ng/g liver) in guillemots.


Environment International | 2011

Perfluoroalkyl carboxylates and sulfonates and precursors in relation to dietary source tracers in the eggs of four species of gulls (Larids) from breeding sites spanning Atlantic to Pacific Canada

Wouter A. Gebbink; Robert J. Letcher; Neil M. Burgess; Louise Champoux; John E. Elliott; Craig E. Hebert; Pamela A. Martin; Mark Wayland; D.V. Chip Weseloh; Laurie K. Wilson

In the present study, we identified and examined the spatial trends, sources and dietary relationships of bioaccumulative perfluorinated sulfonate (PFSA; C(6), C(8), and C(10) chain lengths) and carboxylate (PFCA; C(6) to C(15) chain lengths) contaminants, as well as precursor compounds including several perfluorinated sulfonamides, and fluorotelomer acids and alcohols, in individual eggs (collected in 2008) from four gull species [glaucous-winged (Larus glaucescens), California (Larus californicus), ring-billed (Larus delawarensis) and herring (Larus argentatus) gulls] from 15 marine and freshwater colony sites in provinces across Canada. The pattern of PFSAs was dominated by perfluorooctane sulfonate (PFOS; >89% of ΣPFSA concentration) regardless of egg collection location. The highest ΣPFSA concentrations were found in the eggs collected in the urbanized areas in the Great Lakes and the St. Lawrence River area [Big Chicken Island 308 ng/g ww, Toronto Harbour 486 ng/g ww, and Ile Deslauriers (HG) 299 ng/g ww]. Also, eggs from all freshwater colony sites had higher ΣPFSA concentrations, which were significant (p<0.05) in many cases, compared to the marine sites with the exception of the Sable Island colony in Atlantic Canada off the coast of Nova Scotia. C(6) to C(15) chain length PFCAs were detected in the eggs, although the pattern was variable among the 15 sites, where PFUnA and PFTrA dominated the pattern for most colonies. Like the ΣPFSA, the highest concentrations of ΣPFCA were found in the eggs from Big Chicken Island, Toronto Harbour, Ile Deslauriers (HG), and Sable Island, although not all freshwater sites had higher concentrations compared to marine sites. Dietary tracers [δ(15)N and δ(13)C stable isotopes (SIs)] revealed that PFSA and PFCA exposure is colony dependent. SI signatures suggested that gulls from most marine colony sites were exposed to PFCs via marine prey. The exception was the Mandarte Island colony in Pacific British Columbia, where PFSA and PFCA exposure appeared to be via terrestrial and/or freshwater prey consumption. The same was true for the freshwater sites where egg SIs suggested both aquatic and terrestrial prey consumption as the source for PFC exposure depending on the colony. Both aquatic (marine and freshwater) and terrestrial prey are likely sources of PFC exposure to gulls but exposure scenarios are colony-specific.


Environmental Research | 2012

Mercury sources and fate in the Gulf of Maine.

Elsie M. Sunderland; Aria Amirbahman; Neil M. Burgess; John Dalziel; Gareth C. Harding; Stephen H. Jones; Elizabeth M Kamai; Margaret R. Karagas; Xun Shi; Celia Y. Chen

Most human exposure to mercury (Hg) in the United States is from consuming marine fish and shellfish. The Gulf of Maine is a complex marine ecosystem comprising twelve physioregions, including the Bay of Fundy, coastal shelf areas and deeper basins that contain highly productive fishing grounds. Here we review available data on spatial and temporal Hg trends to better understand the drivers of human and biological exposures. Atmospheric Hg deposition from U.S. and Canadian sources has declined since the mid-1990s in concert with emissions reductions and deposition from global sources has increased. Oceanographic circulation is the dominant source of total Hg inputs to the entire Gulf of Maine region (59%), followed by atmospheric deposition (28%), wastewater/industrial sources (8%) and rivers (5%). Resuspension of sediments increases MeHg inputs to overlying waters, raising concerns about benthic trawling activities in shelf regions. In the near coastal areas, elevated sediment and mussel Hg levels are co-located in urban embayments and near large historical point sources. Temporal patterns in sentinel species (mussels and birds) have in some cases declined in response to localized point source mercury reductions but overall Hg trends do not show consistent declines. For example, levels of Hg have either declined or remained stable in eggs from four seabird species collected in the Bay of Fundy since 1972. Quantitatively linking Hg exposures from fish harvested from the Gulf of Maine to human health risks is challenging at this time because no data are available on the geographic origin of seafood consumed by coastal residents. In addition, there is virtually no information on Hg levels in commercial species for offshore regions of the Gulf of Maine where some of the most productive fisheries are located. Both of these data gaps should be priorities for future research.


Environmental Science & Technology | 2010

Increasing Mercury in Yellow Perch at a Hotspot in Atlantic Canada, Kejimkujik National Park

Brianna Wyn; Karen A. Kidd; Neil M. Burgess; R. Allen Curry; Kelly R. Munkittrick

In the mid-1990s, yellow perch (Perca flavescens) and common loons (Gavia immer) from Kejimkujik National Park and National Historic Site (KNPNHS), Nova Scotia, Canada, had among the highest mercury (Hg) concentrations across North America. In 2006 and 2007, we re-examined 16 lakes to determine whether there have been changes in Hg in the loon’s preferred prey, yellow perch. Total Hg concentrations were measured in up to nine perch in each of three size classes (5−10 cm, 10−15 cm, and 15−20 cm) consumed by loons. Between 1996/97 and 2006/07, polynomial regressions indicated that Hg in yellow perch increased an average of 29% in ten lakes, decreased an average of 21% in three, and were unchanged in the remaining three lakes. In 2006/07, perch in 75% of the study lakes had Hg concentrations (standardized to 12-cm fish length) equal to or above the concentration (0.21 μg·g−1 ww) associated with a 50% reduction in maximum productivity of loons, compared with only 56% of these lakes in 1996/97. Mercury contamination currently poses a greater threat to loon health than a decade ago, and further reductions in anthropogenic emissions should be considered to reduce its impacts on ecosystem health.


Environmental Toxicology and Chemistry | 2012

Derivation of screening benchmarks for dietary methylmercury exposure for the common loon (Gavia immer): Rationale for use in ecological risk assessment

David C. Depew; Niladri Basu; Neil M. Burgess; Linda M. Campbell; David C. Evers; Keith A. Grasman; Anton M. Scheuhammer

The current understanding of methylmercury (MeHg) toxicity to avian species has improved considerably in recent years and indicates that exposure to environmentally relevant concentrations of MeHg through the diet can adversely affect various aspects of avian health, reproduction, and survival. Because fish-eating birds are at particular risk for elevated MeHg exposure, the authors surveyed the available primary and secondary literature to summarize the effects of dietary MeHg on the common loon (Gavia immer) and to derive ecologically relevant toxic thresholds for dietary exposure to MeHg in fish prey. After considering the available data, the authors propose three screening benchmarks of 0.1, 0.18, and 0.4 µg g(-1) wet weight MeHg in prey fish. The lowest benchmark (0.1 µg g(-1) wet wt) is the threshold for adverse behavioral impacts in adult loons and is close to the empirically determined no observed adverse effects level for subclinical effects observed in captive loon chicks. The remaining benchmarks (0.18 and 0.4 µg g(-1) wet wt) correspond to MeHg levels in prey fish associated with significant reproductive impairment and reproductive failure in wild adult loons. Overall, these benchmarks incorporate recent findings and reviews of MeHg toxicity in aquatic fish-eating birds and provide the basis for a national ecological risk assessment for Hg and loons in Canada.


Environmental Science & Technology | 2013

European Starlings (Sturnus vulgaris) Suggest That Landfills Are an Important Source of Bioaccumulative Flame Retardants to Canadian Terrestrial Ecosystems

Da Chen; Pamela A. Martin; Neil M. Burgess; Louise Champoux; John E. Elliott; Douglas J. Forsyth; Abde Idrissi; Robert J. Letcher

Landfills are used as the primary means for the disposal of municipal solid waste in Canada. In the present study, polybrominated diphenyl ethers (PBDEs) and other flame retardants (FRs) were determined in fresh European starling ( Sturnus vulgaris ) eggs collected in 2009, 2010, and 2011 from nest boxes established within, adjacent to, and 10 and 40 km distant to five major urban centers across Canada, i.e., Vancouver, British Columbia (BC); Calgary, Alberta (AB); Hamilton, Ontario (ON); Montréal, Québec (QC); and Halifax, Nova Scotia (NS). Nest boxes were located in several land use types: urban industrial areas (districts of industrial activity within city limits), landfill sites (adjacent to cities), and rural (agricultural) sites located 10 and 40 km distant from the major urban centers, as well as a national reference site. Of the 14 PBDE congeners and 16 non-PBDE FR substances determined in the starling eggs, BDE-17, -28, -47, -49, -66, -85, -99, -100, -138, -153, -154, -183, and -209, Dechlorane Plus isomers (anti and syn), and bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEHTBP) were most frequently quantifiable. The data revealed orders of magnitude greater PBDE concentrations in eggs from starlings nesting in landfill sites (median: 28-280 ng/g wet weight) relative to those from urban industrial and rural environments. However, the percent fractional composition of the PBDE congener patterns did not vary significantly between the types of land uses or between years. Additionally, the median ∑PBDE concentration in eggs from landfill sites and the human population density of the metropolitan region that the landfill serves were highly correlated (r(2) = 0.998, p < 0.001). As the first transcontinental effort in assessing FR contamination in Canadian terrestrial ecosystems, the present study strongly suggest that landfills are an important FR source to starlings nesting nearby and that other terrestrial organisms could also be similarly exposed.


Ecohealth | 2008

Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the North American Atlantic Coast

David C. Evers; Robert P. Mason; Neil C. Kamman; Celia Y. Chen; Andrea L. Bogomolni; David L. Taylor; Chad R. Hammerschmidt; Stephen H. Jones; Neil M. Burgess; Kenneth Munney; Katharine C. Parsons

During the past century, anthropogenic activities have altered the distribution of mercury (Hg) on the earth’s surface. The impacts of such alterations to the natural cycle of Hg can be minimized through coordinated management, policy decisions, and legislative regulations. An ability to quantitatively measure environmental Hg loadings and spatiotemporal trends of their fate in the environment is critical for science-based decision making. Here, we outline a Hg monitoring program for temperate estuarine and marine ecosystems on the Atlantic Coast of North America. This framework follows a similar, previously developed plan for freshwater and terrestrial ecosystems in the U.S. Methylmercury (MeHg) is the toxicologically relevant form of Hg, and its ability to bioaccumulate in organisms and biomagnify in food webs depends on numerous biological and physicochemical factors that affect its production, transport, and fate. Therefore, multiple indicators are needed to fully characterize potential changes of Hg loadings in the environment and MeHg bioaccumulation through the different marine food webs. In addition to a description of how to monitor environmental Hg loads for air, sediment, and water, we outline a species-specific matrix of biotic indicators that include shellfish and other invertebrates, fish, birds and mammals. Such a Hg monitoring template is applicable to coastal areas across the Northern Hemisphere and is transferable to arctic and tropical marine ecosystems. We believe that a comprehensive approach provides an ability to best detect spatiotemporal Hg trends for both human and ecological health, and concurrently identify food webs and species at greatest risk to MeHg toxicity.

Collaboration


Dive into the Neil M. Burgess's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge