Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil V. Whittock is active.

Publication


Featured researches published by Neil V. Whittock.


American Journal of Human Genetics | 2006

Mutation of the LUNATIC FRINGE Gene in Humans Causes Spondylocostal Dysostosis with a Severe Vertebral Phenotype

Duncan B. Sparrow; Gavin Chapman; Merridee A. Wouters; Neil V. Whittock; Sian Ellard; Diane Fatkin; Peter D Turnpenny; Kenro Kusumi; David Sillence; Sally L. Dunwoodie

The spondylocostal dysostoses (SCDs) are a heterogeneous group of vertebral malsegmentation disorders that arise during embryonic development by a disruption of somitogenesis. Previously, we had identified two genes that cause a subset of autosomal recessive forms of this disease: DLL3 (SCD1) and MESP2 (SCD2). These genes are important components of the Notch signaling pathway, which has multiple roles in development and disease. Here, we have used a candidate-gene approach to identify a mutation in a third Notch pathway gene, LUNATIC FRINGE (LFNG), in a family with autosomal recessive SCD. LFNG encodes a glycosyltransferase that modifies the Notch family of cell-surface receptors, a key step in the regulation of this signaling pathway. A missense mutation was identified in a highly conserved phenylalanine close to the active site of the enzyme. Functional analysis revealed that the mutant LFNG was not localized to the correct compartment of the cell, was unable to modulate Notch signaling in a cell-based assay, and was enzymatically inactive. This represents the first known mutation in the human LFNG gene and reinforces the hypothesis that proper regulation of the Notch signaling pathway is an absolute requirement for the correct patterning of the axial skeleton.


American Journal of Human Genetics | 2004

Mutated MESP2 Causes Spondylocostal Dysostosis in Humans

Neil V. Whittock; Duncan B. Sparrow; Merridee A. Wouters; David Sillence; Sian Ellard; Sally L. Dunwoodie; Peter D. Turnpenny

Spondylocostal dysostosis (SCD) is a term given to a heterogeneous group of disorders characterized by abnormal vertebral segmentation (AVS). We have previously identified mutations in the Delta-like 3 (DLL3) gene as a major cause of autosomal recessive spondylocostal dysostosis. DLL3 encodes a ligand for the Notch receptor and, when mutated, defective somitogenesis occurs resulting in a consistent and distinctive pattern of AVS affecting the entire spine. From our study cohort of cases of AVS, we have identified individuals and families with abnormal segmentation of the entire spine but no mutations in DLL3, and, in some of these, linkage to the DLL3 locus at 19q13.1 has been excluded. Within this group, the radiological phenotype differs mildly from that of DLL3 mutation-positive SCD and is variable, suggesting further heterogeneity. Using a genomewide scanning strategy in one consanguineous family with two affected children, we demonstrated linkage to 15q21.3-15q26.1 and furthermore identified a 4-bp duplication mutation in the human MESP2 gene that codes for a basic helix-loop-helix transcription factor. No MESP2 mutations were found in a further 7 patients with related radiological phenotypes in whom abnormal segmentation affected all vertebrae, nor in a further 12 patients with diverse phenotypes.


Journal of Medical Genetics | 2003

Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis

Peter D. Turnpenny; Neil V. Whittock; J. Duncan; Sally L. Dunwoodie; Kenro Kusumi; Sian Ellard

The spondylocostal dysostoses (SCD) are a group of disorders characterised by multiple vertebral segmentation defects and rib anomalies. SCD can either be sporadic or familial, and can be inherited in either autosomal dominant or recessive modes. We have previously shown that recessive forms of SCD can be caused by mutations in the delta-like 3 gene, DLL3. Here, we have sequenced DLL3 in a series of SCD cases and identified 12 mutations in a further 10 families. These include 10 novel mutations in exons 4–8, comprising nonsense, missense, frameshift, splicing, and in frame insertion mutations that are predicted to result in either the truncation of the mature protein in the extracellular domain, or affect highly conserved amino acid residues in the epidermal growth factor-like repeats of the protein. The affected cases represent diverse ethnic backgrounds and six come from traditionally consanguineous communities. In all affected subjects, the radiological phenotype is abnormal segmentation throughout the entire vertebral column with smooth outlines to the vertebral bodies in childhood, for which we suggest the term “pebble beach sign”. This is a very consistent phenotype-genotype correlation and we suggest the designation SCD type 1 for the AR form caused by mutations in the DLL3 gene.


British Journal of Dermatology | 2006

Preimplantation genetic diagnosis of skin fragility–ectodermal dysplasia syndrome

Hiva Fassihi; Jan Grace; Alison Lashwood; Neil V. Whittock; Peter Braude; Susan J. Pickering; John A. McGrath

Skin fragility–ectodermal dysplasia syndrome is an autosomal recessive disorder caused by loss‐of‐function mutations in the desmosomal protein, plakophilin 1. Clinically, there may be considerable morbidity from extensive skin erosions and painful fissures on the palms and soles. In the absence of any specific treatment, prenatal diagnosis is an option for couples at reproductive risk of recurrence. In 2000, we developed and applied a single cell nested polymerase chain reaction protocol to test one couple for compound heterozygous plakophilin 1 gene mutations by preimplantation genetic diagnosis (PGD). Although pregnancy was established, an unrelated trisomy 22 led to a spontaneous abortion. However, eight embryos of known genetic status were cryopreserved at that stage, and we planned to undertake subsequent frozen embryo replacement cycles that might lead to the birth of an unaffected child in this family. Embryo cryopreservation was carried out in June 2000 using standard protocols in a three‐step freezing procedure. Four embryos were thawed in March 2003, one of which was viable and was used in a frozen embryo replacement cycle, but pregnancy did not occur. The remaining four embryos were thawed in February 2004, two of which were viable (both carriers of the paternal mutation) and these were used in a second frozen embryo replacement cycle, and a singleton pregnancy was established. The childs plakophilin 1 genotype was assessed by direct nucleotide sequencing across the site of both potential mutations. Following two frozen embryo replacement cycles, and almost 4 years after the initial embryo biopsy and mutation analysis, a pregnancy was achieved that progressed to term with the birth of a healthy baby girl. Nucleotide sequencing of cord blood DNA, taken immediately after delivery, showed that the child was a heterozygous carrier of the paternal mutation but not of the maternal mutation. This case demonstrates the value of embryo cryopreservation, which can increase the number of embryo replacement procedures and hence the cumulative pregnancy rate per retrieval cycle. Moreover, this is the first report of successful full‐term pregnancy and birth of a healthy baby following exclusion of a severe genodermatosis by PGD. The successful outcome of PGD in this case illustrates what is technically possible for couples at risk of recurrence of a severe inherited skin disease.


Journal of Medical Genetics | 2003

Greenberg dysplasia (HEM) and lethal X linked dominant Conradi-Hünermann chondrodysplasia punctata (CDPX2): presentation of two cases with overlapping phenotype

Amaka C. Offiah; Sahar Mansour; I Jeffrey; R Nash; Neil V. Whittock; R Pyper; S Bewley; Peter Clayton; Christine M. Hall

Hydrops-ectopic calcification-motheaten (HEM) skeletal dysplasia is a rare lethal autosomal recessive skeletal dysplasia which is also known as Greenberg dysplasia.1 There are currently only seven published cases.2–4 X linked dominant chondrodysplasia punctata (Conradi–Hunermann syndrome) mainly affects females and is characterised by aberrant punctate calcification of cartilage or stippling of the epiphyses, mainly in the areas of the vertebral column, pelvis, and long bones. There is asymmetrical shortening of the long bones, patchy skin changes (follicular atrophoderma), ichthyosis, areas of alopecia, and cataracts. The severity varies from the a lethal form to a mild disease affecting adults who are sometimes diagnosed only after having an affected child.5 The variable pattern of presentation is probably related to random X inactivation, which may also explain the wide spectrum of severity. We report on a further case of HEM and a lethal case of X linked dominant chondrodysplasia punctata, and we highlight the similarities and differences between these two conditions, discussing the role of plasma/tissue sterol measurements in the differential diagnosis. ### Case 1 (JK) A 32 year old Caucasian woman, gravida 2, para 0, was referred for a specialist ultrasound opinion at 14 weeks’ gestation, following an earlier suspicious scan. Her partner was unrelated, 28 years old, and Caucasian. There was no relevant past or family history. The antenatal scan demonstrated hydrops fetalis, echogenic bowel, and extreme micromelia. The pregnancy was terminated at 14 weeks and four days. At post mortem, a marked reduction in total fetal body length was noted. This was the result of severe micromelia, as shown in fig 1(C). The fetus had normal female external genitalia, but a mildly dysmorphic facies with a towering forehead, mild mandibular recession, a flattened nose, and mild hypertelorism. The thorax was small, and the abdomen protuberant as a result of significant hepatomegaly. The …


British Journal of Dermatology | 2001

New mutations in keratin 1 that cause bullous congenital ichthyosiform erythroderma and keratin 2e that cause ichthyosis bullosa of Siemens

Neil V. Whittock; G H S Ashton; W.A.D. Griffiths; Robin A.J. Eady; John A. McGrath

The intermediate filaments of epithelial cells are formed by keratins, a family of structurally related proteins, which are expressed in pairs of acidic (type I) and basic (type II) polypeptides in a tissue‐ and differentiation‐specific manner. Mutations in the genes encoding several keratins have been implicated in the pathogenesis of diseases of keratinization. We report molecular analysis of two patients with the rare autosomal dominant disorders bullous congenital ichthyosiform erythroderma (BCIE) and ichthyosis bullosa of Siemens (IBS). Previous studies have shown that these genodermatoses are due to mutations in the KRT1 and KRT2E genes, respectively. We report a new amino acid substitution mutation in codon 155 of KRT1 (valine to aspartic acid) in the conserved H1 domain of the protein in the patient with BCIE. We also report a novel amino acid substitution mutation in codon 192 of KRT2E (asparagine to lysine) in the conserved 1A helix initiation peptide of the protein in the patient with IBS. Our results demonstrate that these mutations are deleterious to keratin filament network stability and lead to specific clinical inherited disorders of keratinization.


Clinical Genetics | 2004

Pseudodominant inheritance of spondylocostal dysostosis type 1 caused by two familial delta-like 3 mutations.

Neil V. Whittock; Sian Ellard; J. Duncan; C. E. M. Die-Smulders; J. S. H. Vles; Peter D. Turnpenny

Spondylocostal dysostoses (SCD) are a heterogeneous group of disorders of axial skeletal malformation characterized by multiple vertebral segmentation defects and rib anomalies. Sporadic cases with diverse phenotypes, sometimes including multiple organ abnormalities, are relatively common, and monogenic forms demonstrating autosomal recessive (AR) and, more rarely, autosomal dominant (AD) inheritance have been reported. We previously showed that mutations in delta‐like 3 (DLL3), a somitogenesis gene that encodes a ligand for the notch signaling pathway, cause AR SCD with a consistent pattern of abnormal segmentation. We studied an SCD family previously reported to show AD inheritance, in which the phenotype is similar to that in AR cases. Direct DLL3 sequencing of individuals in two generations identified the affected father as homozygous for a novel frameshift mutation, 1440delG. His two affected children were compound heterozygotes for this mutation and a novel missense mutation, G504D, the first putative missense mutation reported in the transmembrane domain of DLL3. Their two unaffected siblings were heterozygotes for the 1440delG mutation. Pseudodominant inheritance has been confirmed, and the findings raise potential consequences for genetic counseling in relation to the SCD disorders.


Experimental Dermatology | 2000

Genomic organization and amplification of the human plakoglobin gene (JUP)

Neil V. Whittock; Robin A.J. Eady; John A. McGrath

Abstract: Plakoglobin is a globular protein common to the intracellular plaques of adhesive junctions, predominantly desmosomes and adherens junctions. Recently, a number of pathogenic mutations have been described in other components of desmosomes, specifically in plakophilin 1, desmoplakin and desmoglein 1. The phenotype of affected patients mainly involves thickening of palm and sole skin (keratoderma). Although no human mutations in plakoglobin have been described thus far, this protein represents an excellent candidate for other human genetic disorders, possibly involving skin and heart, sites of high plakoglobin expression. To facilitate future mutation detection analyses in such conditions, we have characterized the intron–exon organization of the human plakoglobin gene, which comprises 13 distinct exons spanning approximately 17 kb on 17q21. We have also developed a PCR‐based mutation detection strategy using primers placed on flanking introns followed by direct sequencing of the PCR products.


Archives of Dermatological Research | 2001

Genomic localization, organization and amplification of the human zinc transporter protein gene, ZNT4, and exclusion as a candidate gene in different clinical variants of acrodermatitis enteropathica

O Bleck; G H S Ashton; R Mallipeddi; Andrew P. South; Neil V. Whittock; W.H. Irwin McLean; David J. Atherton; John A. McGrath

Abstract Acrodermatitis enteropathica is an inherited disorder of zinc metabolism, the molecular basis of which is currently unknown. Recent transgenic mouse studies have highlighted the potential significance of certain zinc transport proteins, for example ZnT4, in providing clues to the pathogenesis of zinc-related disorders such as acrodermatitis enteropathica. Specifically, mice of any genotype suckled on ZnT4-deficient mice fail to absorb intestinal zinc and ZnT4-deficient mice also develop dermatitis, alopecia and stunted growth. Therefore, to assess human ZnT4 as a candidate gene/protein in acrodermatitis enteropathica or related disorders, we characterized the intron-exon organization of the human ZNT4 gene, which comprises seven distinct exons spanning approximately 38.7 kb. High-resolution radiation hybrid mapping placed ZNT4 on 15q21.1. We also developed a PCR-based mutation detection strategy using primers placed on flanking introns followed by direct sequencing of the PCR products. Using this approach, we sequenced DNA from five individuals with acrodermatitis enteropathica; no mutations were identified. Thus, ZNT4 is unlikely to be the correct candidate gene for this disorder. We also identified and characterized two common single nucleotide polymorphisms in exon 5 and in the 3′ UTR of ZNT4 , which will be useful for future genetic linkage studies in assessing ZNT4 as a candidate gene for other inherited disorders of zinc metabolism.


Human Molecular Genetics | 2002

Lipoid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1)

Takahiro Hamada; W.H. Irwin McLean; Michele Ramsay; G H S Ashton; Arti Nanda; Trefor Jenkins; Isobel Edelstein; Andrew P. South; O Bleck; Vesarat Wessagowit; R Mallipeddi; Guy Orchard; Hong Wan; Patricia J.C. Dopping-Hepenstal; J E Mellerio; Neil V. Whittock; Colin S. Munro; Maurice van Steensel; Peter M. Steijlen; Jian Ni; Lurong Zhang; Takashi Hashimoto; Robin A.J. Eady; John A. McGrath

Collaboration


Dive into the Neil V. Whittock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Wan

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge