Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neill D. F. Campbell is active.

Publication


Featured researches published by Neill D. F. Campbell.


european conference on computer vision | 2008

Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo

Neill D. F. Campbell; George Vogiatzis; Carlos Hernández; Roberto Cipolla

We propose an algorithm to improve the quality of depth-maps used for Multi-View Stereo (MVS). Many existing MVS techniques make use of a two stage approach which estimates depth-maps from neighbouring images and then merges them to extract a final surface. Often the depth-maps used for the merging stage will contain outliers due to errors in the matching process. Traditional systems exploit redundancy in the image sequence (the surface is seen in many views), in order to make the final surface estimate robust to these outliers. In the case of sparse data sets there is often insufficient redundancy and thus performance degrades as the number of images decreases. In order to improve performance in these circumstances it is necessary to remove the outliers from the depth-maps. We identify the two main sources of outliers in a top performing algorithm: (1) spurious matches due to repeated texture and (2) matching failure due to occlusion, distortion and lack of texture. We propose two contributions to tackle these failure modes. Firstly, we store multiple depth hypotheses and use a spatial consistency constraint to extract the true depth. Secondly, we allow the algorithm to return an unknownstate when the a true depth estimate cannot be found. By combining these in a discrete label MRF optimisation we are able to obtain high accuracy depth-maps with low numbers of outliers. We evaluate our algorithm in a multi-view stereo framework and find it to confer state-of-the-art performance with the leading techniques, in particular on the standard evaluation sparse data sets.


european conference on computer vision | 2012

Patch based synthesis for single depth image super-resolution

Oisin Mac Aodha; Neill D. F. Campbell; Arun Nair; Gabriel J. Brostow

We present an algorithm to synthetically increase the resolution of a solitary depth image using only a generic database of local patches. Modern range sensors measure depths with non-Gaussian noise and at lower starting resolutions than typical visible-light cameras. While patch based approaches for upsampling intensity images continue to improve, this is the first exploration of patching for depth images. We match against the height field of each low resolution input depth patch, and search our database for a list of appropriate high resolution candidate patches. Selecting the right candidate at each location in the depth image is then posed as a Markov random field labeling problem. Our experiments also show how important further depth-specific processing, such as noise removal and correct patch normalization, dramatically improves our results. Perhaps surprisingly, even better results are achieved on a variety of real test scenes by providing our algorithm with only synthetic training depth data.


Image and Vision Computing | 2010

Automatic 3D object segmentation in multiple views using volumetric graph-cuts

Neill D. F. Campbell; George Vogiatzis; Carlos Hernández; Roberto Cipolla

We propose an algorithm for automatically obtaining a segmentation of a rigid object in a sequence of images that are calibrated for camera pose and intrinsic parameters. Until recently, the best segmentation results have been obtained by interactive methods that require manual labelling of image regions. Our method requires no user input but instead relies on the camera fixating on the object of interest during the sequence. We begin by learning a model of the objects colour, from the image pixels around the fixation points. We then extract image edges and combine these with the object colour information in a volumetric binary MRF model. The globally optimal segmentation of 3D space is obtained by a graph-cut optimisation. From this segmentation an improved colour model is extracted and the whole process is iterated until convergence. Our first finding is that the fixation constraint, which requires that the object of interest is more or less central in the image, is enough to determine what to segment and initialise an automatic segmentation process. Second, we find that by performing a single segmentation in 3D, we implicitly exploit a 3D rigidity constraint, expressed as silhouette coherency, which significantly improves silhouette quality over independent 2D segmentations. We demonstrate the validity of our approach by providing segmentation results on real sequences.


international conference on computer graphics and interactive techniques | 2014

Learning a manifold of fonts

Neill D. F. Campbell; Jan Kautz

The design and manipulation of typefaces and fonts is an area requiring substantial expertise; it can take many years of study to become a proficient typographer. At the same time, the use of typefaces is ubiquitous; there are many users who, while not experts, would like to be more involved in tweaking or changing existing fonts without suffering the learning curve of professional typography packages. Given the wealth of fonts that are available today, we would like to exploit the expertise used to produce these fonts, and to enable everyday users to create, explore, and edit fonts. To this end, we build a generative manifold of standard fonts. Every location on the manifold corresponds to a unique and novel typeface, and is obtained by learning a non-linear mapping that intelligently interpolates and extrapolates existing fonts. Using the manifold, we can smoothly interpolate and move between existing fonts. We can also use the manifold as a constraint that makes a variety of new applications possible. For instance, when editing a single character, we can update all the other glyphs in a font simultaneously to keep them compatible with our changes.


computer vision and pattern recognition | 2014

Hierarchical Subquery Evaluation for Active Learning on a Graph

Oisin Mac Aodha; Neill D. F. Campbell; Jan Kautz; Gabriel J. Brostow

To train good supervised and semi-supervised object classifiers, it is critical that we not waste the time of the human experts who are providing the training labels. Existing active learning strategies can have uneven performance, being efficient on some datasets but wasteful on others, or inconsistent just between runs on the same dataset. We propose perplexity based graph construction and a new hierarchical subquery evaluation algorithm to combat this variability, and to release the potential of Expected Error Reduction. Under some specific circumstances, Expected Error Reduction has been one of the strongest-performing informativeness criteria for active learning. Until now, it has also been prohibitively costly to compute for sizeable datasets. We demonstrate our highly practical algorithm, comparing it to other active learning measures on classification datasets that vary in sparsity, dimensionality, and size. Our algorithm is consistent over multiple runs and achieves high accuracy, while querying the human expert for labels at a frequency that matches their desired time budget.


conference on visual media production | 2011

Automatic Object Segmentation from Calibrated Images

Neill D. F. Campbell; George Vogiatzis; Carlos Hernández; Roberto Cipolla

This paper addresses the problem of automatically obtaining the object/background segmentation of a rigid 3D object observed in a set of images that have been calibrated for camera pose and intrinsics. Such segmentations can be used to obtain a shape representation of a potentially texture-less object by computing a visual hull. We propose an automatic approach where the object to be segmented is identified by the pose of the cameras instead of user input such as 2D bounding rectangles or brush-strokes. The key behind our method is a pairwise MRF framework that combines (a) foreground/background appearance models, (b) epipolar constraints and (c) weak stereo correspondence into a single segmentation cost function that can be efficiently solved by Graph-cuts. The segmentation thus obtained is further improved using silhouette coherency and then used to update the foreground/background appearance models which are fed into the next Graph-cut computation. These two steps are iterated until segmentation convergences. Our method can automatically provide a 3D surface representation even in texture-less scenes where MVS methods might fail. Furthermore, it confers improved performance in images where the object is not readily separable from the background in colour space, an area that previous segmentation approaches have found challenging.


computer vision and pattern recognition | 2013

Fully-Connected CRFs with Non-Parametric Pairwise Potential

Neill D. F. Campbell; Kartic Subr; Jan Kautz

Conditional Random Fields (CRFs) are used for diverse tasks, ranging from image denoising to object recognition. For images, they are commonly defined as a graph with nodes corresponding to individual pixels and pairwise links that connect nodes to their immediate neighbors. Recent work has shown that fully-connected CRFs, where each node is connected to every other node, can be solved efficiently under the restriction that the pairwise term is a Gaussian kernel over a Euclidean feature space. In this paper, we generalize the pairwise terms to a non-linear dissimilarity measure that is not required to be a distance metric. To this end, we propose a density estimation technique to derive conditional pairwise potentials in a non-parametric manner. We then use an efficient embedding technique to estimate an approximate Euclidean feature space for these potentials, in which the pairwise term can still be expressed as a Gaussian kernel. We demonstrate that the use of non-parametric models for the pairwise interactions, conditioned on the input data, greatly increases expressive power whilst maintaining efficient inference.


british machine vision conference | 2007

Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts

Neill D. F. Campbell; George Vogiatzis; Carlos Hernández; Roberto Cipolla

We propose an algorithm for automatically obtaining a segmentation of a rigid object in a sequence of images that are calibrated for camera pose and intrinsic parameters. Until recently, the best segmentation results have been obtained by interactive methods that require manual labelling of image regions. Our method requires no user input but instead relies on the camera fixating on the object of interest during the sequence. We begin by learning a model of the object is colour, from the image pixels around the fixation points. We then extract image edges and combine these with the object colour information in a volumetric binary MRF model. The globally optimal segmentation of 3D space is obtained by a graph-cut optimisation. From this segmentation an improved colour model is extracted and the whole process is iterated until convergence. Our first finding is that the fixation constraint, which requires that the object of interest is more or less central in the image, is enough to determine what to segment and initialise an automatic segmentation process. Second, we find that by performing a single segmentation in 3D, we implicitly exploit a 3D rigidity constraint, expressed as silhouette coherency, which significantly improves silhouette quality over independent 2D segmentations. We demonstrate the validity of our approach by providing segmentation results on real sequences.


international conference on computer graphics and interactive techniques | 2016

Roto++: accelerating professional rotoscoping using shape manifolds

Wenbin Li; Fabio Viola; Jonathan Starck; Gabriel J. Brostow; Neill D. F. Campbell

Rotoscoping (cutting out different characters/objects/layers in raw video footage) is a ubiquitous task in modern post-production and represents a significant investment in person-hours. In this work, we study the particular task of professional rotoscoping for high-end, live action movies and propose a new framework that works with roto-artists to accelerate the workflow and improve their productivity. Working with the existing keyframing paradigm, our first contribution is the development of a shape model that is updated as artists add successive keyframes. This model is used to improve the output of traditional interpolation and tracking techniques, reducing the number of keyframes that need to be specified by the artist. Our second contribution is to use the same shape model to provide a new interactive tool that allows an artist to reduce the time spent editing each keyframe. The more keyframes that are edited, the better the interactive tool becomes, accelerating the process and making the artist more efficient without compromising their control. Finally, we also provide a new, professionally rotoscoped dataset that enables truly representative, real-world evaluation of rotoscoping methods. We used this dataset to perform a number of experiments, including an expert study with professional roto-artists, to show, quantitatively, the advantages of our approach.


international conference on computer vision | 2015

Direct, Dense, and Deformable: Template-Based Non-rigid 3D Reconstruction from RGB Video

Rui Yu; Chris Russell; Neill D. F. Campbell; Lourdes Agapito

In this paper we tackle the problem of capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes using a single RGB-only commodity video camera and a direct approach. While robust and even real-time solutions exist to this problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex multi-camera rigs, take advantage of the additional depth channel available in RGB-D cameras, or deal with specific shapes such as faces or planar surfaces. In contrast, our method makes use of a single RGB video as input, it can capture the deformations of generic shapes, and the depth estimation is dense, per-pixel and direct. We first compute a dense 3D template of the shape of the object, using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. Our energy optimization approach minimizes a robust photometric cost that simultaneously estimates the temporal correspondences and 3D deformations with respect to the template mesh. In our experimental evaluation we show a range of qualitative results on novel datasets, we compare against an existing method that requires multi-frame optical flow, and perform a quantitative evaluation against other template-based approaches on a ground truth dataset.

Collaboration


Dive into the Neill D. F. Campbell's collaboration.

Top Co-Authors

Avatar

Carl Henrik Ek

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lourdes Agapito

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Vicente

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge