Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neils B. Quashie is active.

Publication


Featured researches published by Neils B. Quashie.


Molecular Microbiology | 2007

Functional characterization of both MAP kinases of the human malaria parasite Plasmodium falciparum by reverse genetics

Dominique Dorin-Semblat; Neils B. Quashie; Jean Halbert; Audrey Sicard; Caroline Doerig; Elizabeth Peat; Lisa C. Ranford-Cartwright; Christian Doerig

The kinome of the human malaria parasite Plasmodium falciparum includes two genes encoding mitogen‐activated protein kinase (MAPK) homologues, pfmap‐1 and pfmap‐2, but no clear orthologue of the MAPK kinase (MAPKK) family, raising the question of the mode of activation and function of the plasmodial MAPKs. Functional studies in the rodent malaria model Plasmodium berghei recently showed the map‐2 gene to be dispensable for asexual growth and gametocytogenesis, but essential for male gametogenesis in the mosquito vector. Here, we demonstrate by using a reverse genetics approach that the map‐2 gene is essential for completion of the asexual cycle of P. falciparum, an unexpected result in view of the non‐essentiality of the orthologous gene for P. berghei erythrocytic schizogony. This validates Pfmap‐2 as a potential target for chemotherapeutic intervention. In contrast, the other P. falciparum MAPK, Pfmap‐1, is required neither for in vitro schizogony and gametocytogenesis in erythrocytes, nor for gametogenesis and sporogony in the mosquito vector. However, Pfmap‐2 protein levels are elevated in pfmap‐1‐ parasites, suggesting that Pfmap‐1 fulfils an important function in asexual parasites that necessitates compensatory adaptation in parasites lacking this enzyme.


Malaria Journal | 2006

An improved and highly sensitive microfluorimetric method for assessing susceptibility of Plasmodium falciparum to antimalarial drugs in vitro

Neils B. Quashie; Harry P. de Koning; Lisa C. Ranford-Cartwright

BackgroundThe standard in vitro protocol currently in use for drug testing against Plasmodium falciparum, based on the incorporation of the purine [3H]-hypoxanthine, has two serious drawbacks. Firstly it is unsuitable for the testing of drugs that directly or indirectly impact on purine salvage or metabolism. Secondly, it relies on the use of expensive radiolabelled material, with added issues concerning detection, storage and waste disposal that make it unsuitable for use in many disease-endemic areas. Recently, the use of fluorochromes has been suggested as an alternative, but quenching of the fluorescence signal by the haemoglobin present in cultures of Plasmodium falciparum-infected erythrocytes severely limits the usefulness of this approach.MethodsIn order to resolve this problem, a new PicoGreen®-based procedure has been developed which incorporates additional steps to remove the interfering haemoglobin. The 50% inhibitory concentration (IC50) values of chloroquine and pyrimethamine against P. falciparum laboratory lines 3D7 and K1 were determined using the new protocol.ResultsThe IC50 values of chloroquine and pyrimethamine against P. falciparum laboratory lines 3D7 and K1 determined with the new fluorescence-based protocol were statistically identical to those obtained using the traditional 3H-hypoxanthine incorporation method, and consistent with literature values.ConclusionThe new method proved to be accurate, reproducible and sensitive, and has the advantage of being non-radioactive. The improved PicoGreen® method has the potential to replace traditional in vitro drug resistance assay techniques.


Malaria Journal | 2013

Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy

Nancy O. Duah; Sena A. Matrevi; Dziedzom K. de Souza; Daniel De-Graft Binnah; Mary M Tamakloe; Vera S Opoku; Christiana O Onwona; Charles Narh; Neils B. Quashie; Benjamin Abuaku; Christopher Duplessis; Karl C. Kronmann; Kwadwo A. Koram

BackgroundWith the introduction of artemisinin-based combination therapy (ACT) in 2005, monitoring of anti-malarial drug efficacy, which includes the use of molecular tools to detect known genetic markers of parasite resistance, is important for first-hand information on the changes in parasite susceptibility to drugs in Ghana. This study investigated the Plasmodium falciparum multidrug resistance gene (pfmdr1) copy number, mutations and the chloroquine resistance transporter gene (pfcrt) mutations in Ghanaian isolates collected in seven years to detect the trends in prevalence of mutations.MethodsArchived filter paper blood blots collected from children aged below five years with uncomplicated malaria in 2003–2010 at sentinel sites were used. Using quantitative real-time polymerase chain reaction (qRT-PCR), 756 samples were assessed for pfmdr1 gene copy number. PCR and restriction fragment length polymorphism (RFLP) were used to detect alleles of pfmdr1 86 in 1,102 samples, pfmdr1 184, 1034, 1042 and 1246 in 832 samples and pfcrt 76 in 1,063 samples. Merozoite surface protein 2 (msp2) genotyping was done to select monoclonal infections for copy number analysis.ResultsThe percentage of isolates with increased pfmdr1 copy number were 4, 27, 9, and 18% for 2003–04, 2005–06, 2007–08 and 2010, respectively. Significant increasing trends for prevalence of pfmdr1 N86 (×2 = 96.31, p <0.001) and pfcrt K76 (×2 = 64.50, p <0.001) and decreasing trends in pfmdr1 Y86 (×2 = 38.52, p <0.001) and pfcrt T76 (×2 = 43.49, p <0.001) were observed from 2003–2010. The pfmdr1 F184 and Y184 prevalence showed an increasing and decreasing trends respectively but were not significant (×2 = 7.39,p=0.060; ×2 = 7.49, p = 0.057 respectively). The pfmdr1 N86-F184-D1246 haplotype, which is alleged to be selected by artemether-lumefantrine showed a significant increasing trend (×2 = 20.75, p < 0.001).ConclusionIncreased pfmdr1 gene copy number was observed in the isolates analysed and this finding has implications for the use of ACT in the country although no resistance has been reported. The decreasing trend in the prevalence of chloroquine resistance markers after change of treatment policy presents the possibility for future introduction of chloroquine as prophylaxis for malaria risk groups such as children and pregnant women in Ghana.


Biochemical Journal | 2008

A comprehensive model of purine uptake by the malaria parasite Plasmodium falciparum: identification of four purine transport activities in intraerythrocytic parasites

Neils B. Quashie; Dominique Dorin-Semblat; Patrick G. Bray; Giancarlo A. Biagini; Christian Doerig; Lisa C. Ranford-Cartwright; Harry P. de Koning

Plasmodium falciparum is incapable of de novo purine biosynthesis, and is absolutely dependent on transporters to salvage purines from the environment. Only one low-affinity adenosine transporter has been characterized to date. In the present study we report a comprehensive study of purine nucleobase and nucleoside transport by intraerythrocytic P. falciparum parasites. Isolated trophozoites expressed (i) a high-affinity hypoxanthine transporter with a secondary capacity for purine nucleosides, (ii) a separate high-affinity transporter for adenine, (iii) a low-affinity adenosine transporter, and (iv) a low-affinity/high-capacity adenine carrier. Hypoxanthine was taken up with 12-fold higher efficiency than adenosine. Using a parasite clone with a disrupted PfNT1 (P. falciparum nucleoside transporter 1) gene we found that the high-affinity hypoxanthine/nucleoside transport activity was completely abolished, whereas the low-affinity adenosine transport activity was unchanged. Adenine transport was increased, presumably to partly compensate for the loss of the high-affinity hypoxanthine transporter. We thus propose a model for purine salvage in P. falciparum, based on the highly efficient uptake of hypoxanthine by PfNT1 and a high capacity for purine nucleoside uptake by a lower affinity carrier.


Journal of Antimicrobial Chemotherapy | 2011

Symmetrical choline-derived dications display strong anti-kinetoplastid activity

H. Ibrahim; Mohammed I. Al-Salabi; Nasser El Sabbagh; Neils B. Quashie; Abdulsalam A. M. Alkhaldi; Roger Escale; Terry K. Smith; Henri Vial; Harry P. de Koning

OBJECTIVES to investigate the anti-kinetoplastid activity of choline-derived analogues with previously reported antimalarial efficacy. METHODS from an existing choline analogue library, seven antimalarial compounds, representative of the first-, second- and third-generation analogues previously developed, were assessed for activity against Trypanosoma and Leishmania spp. Using a variety of techniques, the effects of choline analogue exposure on the parasites were documented and a preliminary investigation of their mode of action was performed. RESULTS the activities of choline-derived compounds against Trypanosoma brucei and Leishmania mexicana were determined. The compounds displayed promising anti-kinetoplastid activity, particularly against T. brucei, to which 4/7 displayed submicromolar EC(50) values for the wild-type strain. Low micromolar concentrations of most compounds cleared trypanosome cultures within 24-48 h. The compounds inhibit a choline transporter in Leishmania, but their entry may not depend only on this carrier; T. b. brucei lacks a choline carrier and the mode of uptake remains unclear. The compounds had no effect on the overall lipid composition of the cells, cell cycle progression or cyclic adenosine monophosphate production or short-term effects on intracellular calcium levels. However, several of the compounds, displayed pronounced effects on the mitochondrial membrane potential; this action was not associated with production of reactive oxygen species but rather with a slow rise of intracellular calcium levels and DNA fragmentation. CONCLUSIONS the choline analogues displayed strong activity against kinetoplastid parasites, particularly against T. b. brucei. In contrast to their antimalarial activity, they did not act on trypanosomes by disrupting choline salvage or phospholipid metabolism, instead disrupting mitochondrial function, leading to chromosomal fragmentation.


Antimicrobial Agents and Chemotherapy | 2013

High-Throughput Analysis of Antimalarial Susceptibility Data by the WorldWide Antimalarial Resistance Network (WWARN) In Vitro Analysis and Reporting Tool

Charles J. Woodrow; Sabina Dahlström; Richard Cooksey; Jennifer A. Flegg; Hervé Le Nagard; Claribel Murillo; Didier Ménard; François Nosten; Kanlaya Sriprawat; Lise Musset; Neils B. Quashie; Pharath Lim; Rick M. Fairhurst; Sam L. Nsobya; Véronique Sinou; Harald Noedl; Bruno Pradines; Jacob D. Johnson; Philippe J Guerin; Carol Hopkins Sibley; Jacques Le Bras

ABSTRACT Assessment of in vitro susceptibility is a fundamental component of antimalarial surveillance studies, but wide variations in the measurement of parasite growth and the calculation of inhibitory constants make comparisons of data from different laboratories difficult. Here we describe a Web-based, high-throughput in vitro analysis and reporting tool (IVART) generating inhibitory constants for large data sets. Fourteen primary data sets examining laboratory-determined susceptibility to artemisinin derivatives and artemisinin combination therapy partner drugs were collated from 11 laboratories. Drug concentrations associated with half-maximal inhibition of growth (IC50s) were determined by a modified sigmoid Emax model-fitting algorithm, allowing standardized analysis of 7,350 concentration-inhibition assays involving 1,592 isolates. Examination of concentration-inhibition data revealed evidence of apparent paradoxical growth at high concentrations of nonartemisinin drugs, supporting amendment of the method for calculating the maximal drug effect in each assay. Criteria for defining more-reliable IC50s based on estimated confidence intervals and growth ratios improved correlation coefficients for the drug pairs mefloquine-quinine and chloroquine-desethylamodiaquine in 9 of 11 and 8 of 8 data sets, respectively. Further analysis showed that maximal drug inhibition was higher for artemisinins than for other drugs, particularly in ELISA (enzyme-linked immunosorbent assay)-based assays, a finding consistent with the earlier onset of action of these drugs in the parasite life cycle. This is the first high-throughput analytical approach to apply consistent constraints and reliability criteria to large, diverse antimalarial susceptibility data sets. The data also illustrate the distinct biological properties of artemisinins and underline the need to apply more sensitive approaches to assessing in vitro susceptibility to these drugs.


Microbiology | 2011

Plasmodium falciparum NIMA-related kinase Pfnek-1: sex specificity and assessment of essentiality for the erythrocytic asexual cycle

Dominique Dorin-Semblat; Sophie Schmitt; Jean-Philippe Semblat; Audrey Sicard; Luc Reininger; Dean Goldring; Shelley Patterson; Neils B. Quashie; Debopam Chakrabarti; Laurent Meijer; Christian Doerig

The Plasmodium falciparum kinome includes a family of four protein kinases (Pfnek-1 to -4) related to the NIMA (never-in-mitosis) family, members of which play important roles in mitosis and meiosis in eukaryotic cells. Only one of these, Pfnek-1, which we previously characterized at the biochemical level, is expressed in asexual parasites. The other three (Pfnek-2, -3 and -4) are expressed predominantly in gametocytes, and a role for nek-2 and nek-4 in meiosis has been documented. Here we show by reverse genetics that Pfnek-1 is required for completion of the asexual cycle in red blood cells and that its expression in gametocytes in detectable by immunofluorescence in male (but not in female) gametocytes, in contrast with Pfnek-2 and Pfnek-4. This indicates that the function of Pfnek-1 is non-redundant with those of the other members of the Pfnek family and identifies Pfnek-1 as a potential target for antimalarial chemotherapy. A medium-throughput screen of a small-molecule library provides proof of concept that recombinant Pfnek-1 can be used as a target in drug discovery.


Malaria Journal | 2013

Prevalence of congenital malaria in high-risk Ghanaian newborns: a cross-sectional study

Christabel Enweronu-Laryea; George Adjei; Benjamin Mensah; Nancy O. Duah; Neils B. Quashie

BackgroundCongenital malaria is defined as malaria parasitaemia in the first week of life. The reported prevalence of congenital malaria in sub-Saharan Africa is variable (0 - 46%). Even though the clinical significance of congenital malaria parasitaemia is uncertain, anti-malarial drugs are empirically prescribed for sick newborns by frontline health care workers. Data on prevalence of congenital malaria in high-risk newborns will inform appropriate drug use and timely referral of sick newborns.MethodsBlood samples of untreated newborns less than 1 week of age at the time of referral to Korle Bu Teaching hospital in Accra, Ghana during the peak malaria seasons (April to July) of 2008 and 2010 were examined for malaria parasites by, i) Giemsa-stained thick and thin blood smears for parasite count and species identification, ii) histidine-rich protein- and lactic dehydrogenase-based rapid diagnosis tests, or iii) polymerase chain reaction amplification of the merozoite surface protein 2 gene, for identification of sub-microscopic parasitaemia. Other investigations were also done as clinically indicated.ResultsIn 2008, nine cases of Plasmodium falciparum parasitaemia were diagnosed by microscopy in 405 (2.2%) newborns. All the nine newborns had low parasite densities (≤50 per microlitre). In 2010, there was no case of parasitaemia by either microscopy or rapid diagnosis tests in 522 newborns; however, 56/467 (12%) cases of P. falciparum were detected by polymerase chain reaction.ConclusionCongenital malaria is an uncommon cause of clinical illness in high-risk untreated newborns referred to a tertiary hospital in the first week of life. Empirical anti-malarial drug treatment for sick newborns without laboratory confirmation of parasitaemia is imprudent. Early referral of sick newborns to hospitals with resources and skills for appropriate care is recommended.


Malaria Journal | 2010

Uptake of purines in Plasmodium falciparum-infected human erythrocytes is mostly mediated by the human Equilibrative Nucleoside Transporter and the human Facilitative Nucleobase Transporter

Neils B. Quashie; Lisa C. Ranford-Cartwright; Harry P. de Koning

BackgroundPlasmodium parasites are unable to synthesize purines de novo and have to salvage them from the host. Due to this limitation in the parasite, purine transporters have been an area of focus in the search for anti-malarial drugs. Although the uptake of purines through the human equilibrative nucleoside transporter (hENT1), the human facilitative nucleobase transporter (hFNT1) and the parasite-induced new permeation pathway (NPP) has been studied, no information appears to exist on the relative contribution of these three transporters to the uptake of adenosine and hypoxanthine. Using the appropriate transporter inhibitors, the role of each of these salvage pathways to the overall purine transport in intraerythrocytic Plasmodium falciparum was systematically investigated.MethodsThe transport of adenosine, hypoxanthine and adenine into uninfected and P. falciparum-infected human erythrocytes was investigated in the presence or absence of classical inhibitors of the hFNT1, hENT1 and NPP. The effective inhibition of the various transporters by the classical inhibitors was verified using appropriate known substrates. The ability of high concentration of unlabelled substrates to saturate these transporters was also studied.ResultsTransport of exogenous purine into infected or uninfected erythrocytes occurred primarily through saturable transporters rather than through the NPP. Hypoxanthine and adenine appeared to enter erythrocytes mainly through the hFNT1 nucleobase transporter whereas adenosine entered predominantly through the hENT1 nucleoside transporter. The rate of purine uptake was approximately doubled in infected cells compared to uninfected erythrocytes. In addition, it was found that the rate of adenosine uptake was considerably higher than the rate of hypoxanthine uptake in infected human red blood cells (RBC). It was also demonstrated that furosemide inhibited the transport of purine bases through hFNT1.ConclusionCollectively, the data obtained in this study clearly show that the endogenous host erythrocyte transporters hENT1 and hFNT1, rather than the NPP, are the major route of entry of purine into parasitized RBC. Inhibitors of hENT1 and hFNT1, as well as the NPP, should be considered in the development of anti-malarials targeted to purine transport.


American Journal of Tropical Medicine and Hygiene | 2012

Surveillance of Molecular Markers of Plasmodium falciparum Resistance to Sulphadoxine-Pyrimethamine 5 Years after the Change of Malaria Treatment Policy in Ghana

Nancy O. Duah; Neils B. Quashie; Benjamin K. Abuaku; Peter J. Sebeny; Karl C. Kronmann; Kwadwo A. Koram

In 2005, sulphadoxine-pyrimethamine (SP) became the drug of choice for intermittent preventive treatment of Plasmodium falciparum malaria in pregnancy (IPTp) in Ghana. Reports suggest the use of SP by others to treat uncomplicated malaria. Because of the increased use of SP, the prevalence of mutations in the genes, dihydrofolate reductase (dhfr), and dihydropteroate synthetase (dhps), linked to SP resistance in P. falciparum were determined. Blood samples from 945 children with uncomplicated malaria collected at nine sites from 2003 to 2010 were analyzed using polymerase chain reaction and restriction fragment length polymorphism. Prevalence of the dhfr triple and dhfr plus dhps quadruple mutations showed significant increase in trend from 2003 to 2010 (χ(2) = 18.78, P < 0.001, χ(2) = 15.11, P < 0.001, respectively). For dhps double mutant G437 + E540 the prevalence was low (1.12%) caused by the very low prevalence of E540. Our findings show the wide use of SP in Ghana and therefore its use for IPTp needs to be closely monitored.

Collaboration


Dive into the Neils B. Quashie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge