Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nela Zavaljevski is active.

Publication


Featured researches published by Nela Zavaljevski.


Bioinformatics | 2002

Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions.

Nela Zavaljevski; Fred J. Stevens; Jacques Reifman

MOTIVATION Data that characterize primary and tertiary structures of proteins are now accumulating at a rapid and accelerating rate and require automated computational tools to extract critical information relating amino acid changes with the spectrum of functionally attributes exhibited by a protein. We propose that immunoglobulin-type beta-domains, which are found in approximate 400 functionally distinct forms in humans alone, provide the immense genetic variation within limited conformational changes that might facilitate the development of new computational tools. As an initial step, we describe here an approach based on Support Vector Machine (SVM) technology to identify amino acid variations that contribute to the functional attribute of pathological self-assembly by some human antibody light chains produced during plasma cell diseases. RESULTS We demonstrate that SVMs with selective kernel scaling are an effective tool in discriminating between benign and pathologic human immunoglobulin light chains. Initial results compare favorably against manual classification performed by experts and indicate the capability of SVMs to capture the underlying structure of the data. The data set consists of 70 proteins of human antibody kappa1 light chains, each represented by aligned sequences of 120 amino acids. We perform feature selection based on a first-order adaptive scaling algorithm, which confirms the importance of changes in certain amino acid positions and identifies other positions that are key in the characterization of protein function.


Nucleic Acids Research | 2012

A new strategy to reduce allelic bias in RNA-Seq readmapping.

Ravi Vijaya Satya; Nela Zavaljevski; Jaques Reifman

Accurate estimation of expression levels from RNA-Seq data entails precise mapping of the sequence reads to a reference genome. Because the standard reference genome contains only one allele at any given locus, reads overlapping polymorphic loci that carry a non-reference allele are at least one mismatch away from the reference and, hence, are less likely to be mapped. This bias in read mapping leads to inaccurate estimates of allele-specific expression (ASE). To address this read-mapping bias, we propose the construction of an enhanced reference genome that includes the alternative alleles at known polymorphic loci. We show that mapping to this enhanced reference reduced the read-mapping biases, leading to more reliable estimates of ASE. Experiments on simulated data show that the proposed strategy reduced the number of loci with mapping bias by ≥63% when compared with a previous approach that relies on masking the polymorphic loci and by ≥18% when compared with the standard approach that uses an unaltered reference. When we applied our strategy to actual RNA-Seq data, we found that it mapped up to 15% more reads than the previous approaches and identified many seemingly incorrect inferences made by them.


Proteins | 2009

Genome-wide enzyme annotation with precision control: catalytic families (CatFam) databases.

Chenggang Yu; Nela Zavaljevski; Valmik Desai; Jaques Reifman

In this article, we present a new method termed CatFam (Catalytic Families) to automatically infer the functions of catalytic proteins, which account for 20–40% of all proteins in living organisms and play a critical role in a variety of biological processes. CatFam is a sequence‐based method that generates sequence profiles to represent and infer protein catalytic functions. CatFam generates profiles through a stepwise procedure that carefully controls profile quality and employs nonenzymes as negative samples to establish profile‐specific thresholds associated with a predefined nominal false‐positive rate (FPR) of predictions. The adjustable FPR allows for fine precision control of each profile and enables the generation of profile databases that meet different needs: function annotation with high precision and hypothesis generation with moderate precision but better recall. Multiple tests of CatFam databases (generated with distinct nominal FPRs) against enzyme and nonenzyme datasets show that the methods predictions have consistently high precision and recall. For example, a 1% FPR database predicts protein catalytic functions for a dataset of enzymes and nonenzymes with 98.6% precision and 95.0% recall. Comparisons of CatFam databases against other established profile‐based methods for the functional annotation of 13 bacterial genomes indicate that CatFam consistently achieves higher precision and (in most cases) higher recall, and that (on average) CatFam provides 21.9% additional catalytic functions not inferred by the other similarly reliable methods. These results strongly suggest that the proposed method provides a valuable contribution to the automated prediction of protein catalytic functions. The CatFam databases and the database search program are freely available at http://www.bhsai.org/downloads/catfam.tar.gz. Proteins 2009.


BMC Bioinformatics | 2008

A high-throughput pipeline for designing microarray-based pathogen diagnostic assays

Ravi Vijaya Satya; Nela Zavaljevski; Kamal Kumar; Jaques Reifman

BackgroundWe present a methodology for high-throughput design of oligonucleotide fingerprints for microarray-based pathogen diagnostic assays. The oligonucleotide fingerprints, or DNA microarray probes, are designed for identifying target organisms in environmental or clinical samples. The design process is implemented in a high-performance computing software pipeline that incorporates major algorithmic improvements over a previous version to both reduce computation time and improve specificity assessment.ResultsThe algorithmic improvements result in significant reduction in runtimes, with the updated pipeline being nearly up to five-times faster than the previous version. The improvements in specificity assessment, based on multiple specificity criteria, result in robust and consistent evaluation of cross-hybridization with nontarget sequences. In addition, the multiple criteria provide finer control on the number of resulting fingerprints, which helps in obtaining a larger number of fingerprints with high specificity. Simulation tests for Francisella tularensis and Yersinia pestis, using a well-established hybridization model to estimate cross-hybridization with nontarget sequences, show that the improved specificity criteria yield a larger number of fingerprints as compared to using a single specificity criterion.ConclusionThe faster runtimes, achieved as the result of algorithmic improvements, are critical for extending the pipeline to process multiple target genomes. The larger numbers of identified fingerprints, obtained by considering broader specificity criteria, are essential for designing probes for hard-to-distinguish target sequences.


Mbio | 2014

16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles

Jun Hang; Valmik Desai; Nela Zavaljevski; Yu Yang; Xiaoxu Lin; Ravi Vijaya Satya; Luis J. Martinez; Jason M. Blaylock; Richard G. Jarman; Stephen J. Thomas; Robert A. Kuschner

BackgroundSample storage conditions, extraction methods, PCR primers, and parameters are major factors that affect metagenomics analysis based on microbial 16S rRNA gene sequencing. Most published studies were limited to the comparison of only one or two types of these factors. Systematic multi-factor explorations are needed to evaluate the conditions that may impact validity of a microbiome analysis. This study was aimed to improve methodological options to facilitate the best technical approaches in the design of a microbiome study. Three readily available mock bacterial community materials and two commercial extraction techniques, Qiagen DNeasy and MO BIO PowerSoil DNA purification methods, were used to assess procedures for 16S ribosomal DNA amplification and pyrosequencing-based analysis. Primers were chosen for 16S rDNA quantitative PCR and amplification of region V3 to V1. Swabs spiked with mock bacterial community cells and clinical oropharyngeal swabs were incubated at respective temperatures of -80°C, -20°C, 4°C, and 37°C for 4 weeks, then extracted with the two methods, and subjected to pyrosequencing and taxonomic and statistical analyses to investigate microbiome profile stability.ResultsThe bacterial compositions for the mock community DNA samples determined in this study were consistent with the projected levels and agreed with the literature. The quantitation accuracy of abundances for several genera was improved with changes made to the standard Human Microbiome Project (HMP) procedure. The data for the samples purified with DNeasy and PowerSoil methods were statistically distinct; however, both results were reproducible and in good agreement with each other. The temperature effect on storage stability was investigated by using mock community cells and showed that the microbial community profiles were altered with the increase in incubation temperature. However, this phenomenon was not detected when clinical oropharyngeal swabs were used in the experiment.ConclusionsMock community materials originated from the HMP study are valuable controls in developing 16S metagenomics analysis procedures. Long-term exposure to a high temperature may introduce variation into analysis for oropharyngeal swabs, suggestive of storage at 4°C or lower. The observed variations due to sample storage temperature are in a similar range as the intrapersonal variability among different clinical oropharyngeal swab samples.


Nucleic Acids Research | 2011

QuartetS: a fast and accurate algorithm for large-scale orthology detection

Chenggang Yu; Nela Zavaljevski; Valmik Desai; Jaques Reifman

The unparalleled growth in the availability of genomic data offers both a challenge to develop orthology detection methods that are simultaneously accurate and high throughput and an opportunity to improve orthology detection by leveraging evolutionary evidence in the accumulated sequenced genomes. Here, we report a novel orthology detection method, termed QuartetS, that exploits evolutionary evidence in a computationally efficient manner. Based on the well-established evolutionary concept that gene duplication events can be used to discriminate homologous genes, QuartetS uses an approximate phylogenetic analysis of quartet gene trees to infer the occurrence of duplication events and discriminate paralogous from orthologous genes. We used function- and phylogeny-based metrics to perform a large-scale, systematic comparison of the orthology predictions of QuartetS with those of four other methods [bi-directional best hit (BBH), outgroup, OMA and QuartetS-C (QuartetS followed by clustering)], involving 624 bacterial genomes and >2 million genes. We found that QuartetS slightly, but consistently, outperformed the highly specific OMA method and that, while consuming only 0.5% additional computational time, QuartetS predicted 50% more orthologs with a 50% lower false positive rate than the widely used BBH method. We conclude that, for large-scale phylogenetic and functional analysis, QuartetS and QuartetS-C should be preferred, respectively, in applications where high accuracy and high throughput are required.


PLOS ONE | 2011

AGeS: A Software System for Microbial Genome Sequence Annotation

Kamal Kumar; Valmik Desai; Li Cheng; Maxim Y. Khitrov; Deepak Grover; Ravi Vijaya Satya; Chenggang Yu; Nela Zavaljevski; Jaques Reifman

Background The annotation of genomes from next-generation sequencing platforms needs to be rapid, high-throughput, and fully integrated and automated. Although a few Web-based annotation services have recently become available, they may not be the best solution for researchers that need to annotate a large number of genomes, possibly including proprietary data, and store them locally for further analysis. To address this need, we developed a standalone software application, the Annotation of microbial Genome Sequences (AGeS) system, which incorporates publicly available and in-house-developed bioinformatics tools and databases, many of which are parallelized for high-throughput performance. Methodology The AGeS system supports three main capabilities. The first is the storage of input contig sequences and the resulting annotation data in a central, customized database. The second is the annotation of microbial genomes using an integrated software pipeline, which first analyzes contigs from high-throughput sequencing by locating genomic regions that code for proteins, RNA, and other genomic elements through the Do-It-Yourself Annotation (DIYA) framework. The identified protein-coding regions are then functionally annotated using the in-house-developed Pipeline for Protein Annotation (PIPA). The third capability is the visualization of annotated sequences using GBrowse. To date, we have implemented these capabilities for bacterial genomes. AGeS was evaluated by comparing its genome annotations with those provided by three other methods. Our results indicate that the software tools integrated into AGeS provide annotations that are in general agreement with those provided by the compared methods. This is demonstrated by a >94% overlap in the number of identified genes, a significant number of identical annotated features, and a >90% agreement in enzyme function predictions.


BMC Genomics | 2008

In silico microarray probe design for diagnosis of multiple pathogens

Ravi Vijaya Satya; Nela Zavaljevski; Kamal Kumar; Elizabeth Bode; Susana Padilla; Leonard P. Wasieloski; Jeanne Geyer; Jaques Reifman

BackgroundWith multiple strains of various pathogens being sequenced, it is necessary to develop high-throughput methods that can simultaneously process multiple bacterial or viral genomes to find common fingerprints as well as fingerprints that are unique to each individual genome. We present algorithmic enhancements to an existing single-genome pipeline that allows for efficient design of microarray probes common to groups of target genomes. The enhanced pipeline takes advantage of the similarities in the input genomes to narrow the search to short, nonredundant regions of the target genomes and, thereby, significantly reduces the computation time. The pipeline also computes a three-state hybridization matrix, which gives the expected hybridization of each probe with each target.ResultsDesign of microarray probes for eight pathogenic Burkholderia genomes shows that the multiple-genome pipeline is nearly four-times faster than the single-genome pipeline for this application. The probes designed for these eight genomes were experimentally tested with one non-target and three target genomes. Hybridization experiments show that less than 10% of the designed probes cross hybridize with non-targets. Also, more than 65% of the probes designed to identify all Burkholderia mallei and B. pseudomallei strains successfully hybridize with a B. pseudomallei strain not used for probe design.ConclusionThe savings in runtime suggest that the enhanced pipeline can be used to design fingerprints for tens or even hundreds of related genomes in a single run. Hybridization results with an unsequenced B. pseudomallei strain indicate that the designed probes might be useful in identifying unsequenced strains of B. mallei and B. pseudomallei.


BMC Bioinformatics | 2010

A high-throughput pipeline for the design of real-time PCR signatures.

Ravi Vijaya Satya; Kamal Kumar; Nela Zavaljevski; Jaques Reifman

BackgroundPathogen diagnostic assays based on polymerase chain reaction (PCR) technology provide high sensitivity and specificity. However, the design of these diagnostic assays is computationally intensive, requiring high-throughput methods to identify unique PCR signatures in the presence of an ever increasing availability of sequenced genomes.ResultsWe present the Tool for PCR Signature Identification (TOPSI), a high-performance computing pipeline for the design of PCR-based pathogen diagnostic assays. The TOPSI pipeline efficiently designs PCR signatures common to multiple bacterial genomes by obtaining the shared regions through pairwise alignments between the input genomes. TOPSI successfully designed PCR signatures common to 18 Staphylococcus aureus genomes in less than 14 hours using 98 cores on a high-performance computing system.ConclusionsTOPSI is a computationally efficient, fully integrated tool for high-throughput design of PCR signatures common to multiple bacterial genomes. TOPSI is freely available for download at http://www.bhsai.org/downloads/topsi.tar.gz.


PLOS ONE | 2009

PSPP: a protein structure prediction pipeline for computing clusters.

Michael S. Lee; Rajkumar Bondugula; Valmik Desai; Nela Zavaljevski; In-Chul Yeh; Anders Wallqvist; Jaques Reifman

Background Protein structures are critical for understanding the mechanisms of biological systems and, subsequently, for drug and vaccine design. Unfortunately, protein sequence data exceed structural data by a factor of more than 200 to 1. This gap can be partially filled by using computational protein structure prediction. While structure prediction Web servers are a notable option, they often restrict the number of sequence queries and/or provide a limited set of prediction methodologies. Therefore, we present a standalone protein structure prediction software package suitable for high-throughput structural genomic applications that performs all three classes of prediction methodologies: comparative modeling, fold recognition, and ab initio. This software can be deployed on a users own high-performance computing cluster. Methodology/Principal Findings The pipeline consists of a Perl core that integrates more than 20 individual software packages and databases, most of which are freely available from other research laboratories. The query protein sequences are first divided into domains either by domain boundary recognition or Bayesian statistics. The structures of the individual domains are then predicted using template-based modeling or ab initio modeling. The predicted models are scored with a statistical potential and an all-atom force field. The top-scoring ab initio models are annotated by structural comparison against the Structural Classification of Proteins (SCOP) fold database. Furthermore, secondary structure, solvent accessibility, transmembrane helices, and structural disorder are predicted. The results are generated in text, tab-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial proteomes. Conclusions The standalone pipeline that we introduce here, unlike protein structure prediction Web servers, allows users to devote their own computing assets to process a potentially unlimited number of queries as well as perform resource-intensive ab initio structure prediction.

Collaboration


Dive into the Nela Zavaljevski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenggang Yu

United States Department of Defense

View shared research outputs
Top Co-Authors

Avatar

In-Chul Yeh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anders Wallqvist

United States Army Medical Research and Materiel Command

View shared research outputs
Top Co-Authors

Avatar

Fred J. Stevens

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Keehwan Kwon

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Rembert Pieper

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Cheng

United States Department of Defense

View shared research outputs
Top Co-Authors

Avatar

Michael S. Lee

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge