Neli Jordanova
Bulgarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Neli Jordanova.
Surveys in Geophysics | 1994
Mary Kovacheva; Neli Jordanova; Vassil Karloukovski
The knowledge about past secular variations of the geomagnetic field is achieved on the basis of archaeomagnetic researches of which the Bulgarian studies form an extended data set. In Part I (Kovacheva and Toshkov, 1994), the methodology used in the Sofia palaeomagnetic laboratory was described and the secular variation curves for the last 2000 years were shown. In Part II (this paper), the basic characteristics of the prehistoric materials used in the archaeomagnetic studies are emphasised, particularly in the context of the rock magnetic studies used in connection with palaeointensity determinations. The results of magnetic anisotropy studies of the prehistoric ovens and other fired structures are summarised, including the anisotropy correction of the palaeointensity results for prehistoric materials, different from bricks and pottery. Curves of the direction and intensity of the geomagnetic field during the last 8000 years in Bulgaria are given. The available directional and intensity values have been used to calculate the variation curve of the virtual dipole moment (VDM) for the last 8000 years based on different time interval averages. The path of virtual geomagnetic pole (VGP) positions is discussed.
Tectonophysics | 2003
Bernard Henry; Diana Jordanova; Neli Jordanova; Christine Souque; P. Robion
Abstract Heating produces changes, which does not always correspond to simple enhancement of the magnetic fabric. Two methods are proposed to determine the anisotropy of magnetic susceptibility of the ferrimagnetic minerals formed or that have disappeared by chemical change during successive heating. The first diagonalizes the tensor from the difference between each tensor term before and after heating. The second employs linear regression for each tensor term made with the values obtained throughout a thermal treatment. When the same magnetic fabric is obtained from several thermal steps, it cannot be related to randomly oriented ferrimagnetic minerals. Instead, the newly formed fabric must be related to characteristics of the pre-existing rock. By comparing this ferrimagnetic minerals fabric with the initial whole rock fabric, we can distinguish cases where heating simply enhances pre-existing fabric from those where thermal treatment induces a different fabric. Relative to the pre-heating fabric, this different fabric may simply be an inverse fabric or one whose principal susceptibility axes are oriented in a different direction, related to petrostructural elements other than those defining the initial fabric.
Studia Geophysica Et Geodaetica | 1999
Diana Jordanova; Neli Jordanova
Magnetic studies of different soil types can provide valuable information about palaeoenvironmental conditions at the time they were formed. Results of investigations of rock-magnetism of genetically different soil types, which developed over varying time intervals (Meadow Chernozem - formed during the last 6000 years BP; Leached Cinnamonic soil - formed since the 3rd-2nd century BC and Pellic Vertisoil - the oldest, formed since the Late Pliocene) are presented. The soil profiles of the Leached Cinnamonic and Pellic Vertisoil are characterized by lower values of magnetic susceptibility, as compared to that of the parent materials. It is shown that using percentage frequency-dependent susceptibility (Xfd%) and viscous remanent magnetization (VRM), pedogenic alteration could be detected even in such circumstances. The variations of the parameters measured along the depth of the studied Meadow Chernozem soil profile are characterized by gradual smooth magnetic enhancement, pointing to the absence of secondary redistribution of pedogenic magnetites. In contrast to this case, the two other profiles (Leached Cinnamonic and Pellic Vertisoil) show magnetically enhanced lower (illuvial) horizons due to processes of acid destruction and re-precipitation of the original pedogenic ferromagnetic minerals down the profiles. These specific magnetic properties are of particular importance in using susceptibility variations as a palaeoclimatic proxy record.
Earth, Planets and Space | 2009
Mary Kovacheva; Annick Chauvin; Neli Jordanova; Philippe Lanos; Vassil Karloukovski
The effect of magnetic anisotropy on the palaeointensity results has been evaluated in different materials, including samples from archaeological structures of various ages, such as baked clay from prehistoric domestic ovens or pottery kilns, burnt soil from ancient fires, and bricks and bricks or tiles used in the kiln’s construction. The remanence anisotropy was estimated by the thermoremanent (TRM) anisotropy tensor and isothermal remanence (IRM) tensor methods. The small anisotropy effect (less than 5%) observed in the palaeointensity results of baked clay from the relatively thin prehistoric oven’s floors estimated previously through IRM anisotropy was confirmed by TRM anisotropy of this material. The new results demonstrate the possibility of using IRM anisotropy evaluation to correct baked clay palaeointensity data instead of the more difficult to determine TRM anisotropy ellipsoid. This is not always the case for the palaeointensity results from bricks and tiles. The anisotropy correction to palaeointensity results seems negligible for materials other than pottery. It would therefore appear that the palaeointensity determination is more sensitive to the degree of remanence anisotropy P and the angle between the natural remanent magnetization (NRM) vector and the laboratory field direction, than to the angle between the NRM and the maximum axis of the remanence anisotropy ellipsoid (Kmax).
Physics and Chemistry of The Earth | 2002
Florian Wehland; C Panaiotu; Erwin Appel; V. Hoffmann; Diana Jordanova; Neli Jordanova; I Denut
Magnetic screening in the area of Baia Mare (Romania) was carried out in June 2000 in order to detect the degree of environmental pollution and to test the applicability of this method in this area. With a long tradition of mining activities, a gradual pollution of soil, air and rivers took place continuously in addition to smaller accidents in this area until the dam breakage on the 30.1.2000. During this accident, about 100,000 m3 of mud containing cyanide and heavy metals leaked out and moved over fields and through a village into the river system of Lapus, Somes, Tisza and Danube. Initial magnetic monitoring carried out during the translocation of the polluted waters along the Bulgarian part of the Danube revealed the effectiveness of the method for a proper and fast identification of pollution both in time and space even at remote distances from the source. For the later pilot project magnetic (χ) screening was performed using a portable Bartington MS2 kappameter with a D-loop sensor. In addition fine-grained material (<0.5 mm) was sampled from the fields and river sediments and measured in the laboratory using a MS2 B-sensor. The results of the collected samples show a clear decrease in χ with increasing distance from the dams and mining areas in a regional and local scale, while the results gained by the MS2-D strongly depend on the nature of the ground. The dynamic geological setting around Baia Mare (fluvial sediments and valley fills), produces a heterogeneous background signal. A continuous monitoring system controlling the basic conditions could overcome these limitations.
Geologica Carpathica | 2009
Neven Georgiev; Bernard Henry; Neli Jordanova; Nikolaus Froitzheim; Diana Jordanova; Zivko Ivanov; Dimo Dimov
The emplacement mode of Upper Cretaceous plutons from the southwestern part of the Sredna Gora Zone (Bulgaria): structural and AMS study Several plutons located in the southwestern part of the Sredna Gora Zone — Bulgaria are examples of the Apuseni-Banat-Timok-Sredna Gora type of granites emplaced during Late Cretaceous (86-75 Ma) times. The studied intrusive bodies are spatially related to and deformed by the dextral Iskar-Yavoritsa shear zone. The deformation along the shear zone ceased at the time of emplacement of the undeformed Upper Cretaceous Gutsal pluton, which has intruded the Iskar-Yavoritsa mylonites. A clear transition from magmatic foliation to high-, moderate- and low-temperature superimposed foliation and lineation in the vicinity of the Iskar-Yavoritsa and related shear zones gives evidence for simultaneous tectonics and plutonism. Away from the shear zones, the granitoids appear macroscopically isotropic and were investigated using measurements of anisotropy of magnetic susceptibility at 113 stations. The studied samples show magnetic lineation and foliation, in agreement with the magmatic structures observed at a few sites. Typical features of the internal structure of the plutons are several sheet-like mafic bodies accompanied by swarms of mafic microgranular enclaves. Field observations indicate spatial relationships between mafic bodies and shear zones as well as mingling processes in the magma chamber which suggest simultaneous shearing and magma emplacement. Structural investigations as well as anisotropy of magnetic susceptibility (AMS) data attest to the controlling role of the NWSE trending Iskar-Yavoritsa shear zone and to the syntectonic emplacement of the plutons with deformation in both igneous rocks and their hosts. The tectonic situation may be explained by partitioning of oblique plate convergence into plate-boundary-normal thrusting in the Rhodopes and plate-boundary-parallel transcurrent shearing in the hinterland (Sredna Gora).
Tectonophysics | 2001
Neli Jordanova; Bernard Henry; Diana Jordanova; Zivko Ivanov; Dimo Dimov; Françoise Bergerat
Abstract Two different paleomagnetic directions have been obtained in several formations in northwestern Bulgaria. One of them, found only in Upper Permian–Lower Triassic red sandstones, is very likely a primary magnetization. A secondary magnetization of Eocene age appears as either pre-, syn- or post-folding depending on the site. The identification of the timing of remagnetization with respect to folding allows us to distinguish areas among the first deformed during Tertiary tectonics. Within each superimposed structural unit of the West Balkan, the deformation spread from south to north. The boundary between the Srednogorie and Balkan zones appears to be a major tectonic structure in Bulgaria. The Balkan likely underwent a clockwise rotation relative to stable Europe since the beginning of the main Middle Eocene orogenesis.
Studia Geophysica Et Geodaetica | 1997
Aleš Kapička; Eduard Petrovský; Neli Jordanova
Results of magnetic susceptibility mapping around a coal-burning power plant were used to verify the field in situ measurements with data acquired in laboratory on soil samples collected at approximately the same measurement grid sites at different distance from the source. This comparison enables quantifying the field data obtained using the Bartington MS2 meter and to relate them, at least approximately, to mass specific values. Moreover, it is shown that certain diversity in the grid points of field measurements and soil sampling can slightly bias the field measurements. However, this shift is of minor significance and Bartington field readings can be considered as reliable.
Studia Geophysica Et Geodaetica | 1996
Neli Jordanova; Diana Jordanova; Vassil Karloukovski
SummaryThe anistropy of low field magnetic susceptibility has been studied for seven outcrops of loess sediments in North-Eastern Bulgaria. Different sampling methods were applied in order to choose the best technique for obtaining the primary magnetic fabric of such unconsolidated sediments. AMS results show significant changes in the petrofabric of samples collected by the first technique which disturbs the original sedimentary fabric. The second applied technique does not cause such a strong deformation but some disturbance of the magnetic fabric is probable. Typical sedimentary fabric is obtained from hand samples and it is therefore concluded that this represents the best method for obtaining reliable AMS results from soft sediments.
Frontiers of Earth Science in China | 2016
Diana Jordanova; Neli Jordanova
Thermomagnetic analysis of magnetic susceptibility k(T) was carried out for a number of natural powder materials from soils, baked clay and anthropogenic dust samples using fast (11oC/min) and slow (6.5oC/min) heating rates available in the furnace of Kappabridge KLY2 (Agico). Based on the additional data for mineralogy, grain size and magnetic properties of the studied samples, behaviour of k(T) cycles and the observed differences in the curves for fast and slow heating rate are interpreted in terms of mineralogical transformations and Curie temperatures (Tc). The effect of different sample size is also explored, using large volume and small volume of powder material. It is found that soil samples show enhanced information on mineralogical transformations and appearance of new strongly magnetic phases when using fast heating rate and large sample size. This approach moves the transformation at higher temperature, but enhances the amplitude of the signal of newly created phase. Large sample size gives prevalence of the local micro- environment, created by evolving gases, released during transformations. The example from archeological brick reveals the effect of different sample sizes on the observed Curie temperatures on heating and cooling curves, when the magnetic carrier is substituted magnetite (Mn0.2Fe2.70O4). Large sample size leads to bigger differences in Tcs on heating and cooling, while small sample size results in similar Tcs for both heating rates.