Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nélio B. Barros is active.

Publication


Featured researches published by Nélio B. Barros.


Nature | 2005

Brevetoxicosis: Red tides and marine mammal mortalities

Leanne J. Flewelling; Jerome Naar; Jay P. Abbott; Daniel G. Baden; Nélio B. Barros; Gregory D. Bossart; Marie-Yasmine D. Bottein; Daniel G. Hammond; Elsa M. Haubold; Cynthia A. Heil; Michael S. Henry; Henry M. Jacocks; Tod A. Leighfield; Richard H. Pierce; Thomas D. Pitchford; Sentiel A. Rommel; Paula S. Scott; Karen A. Steidinger; Earnest W. Truby; Frances M. Van Dolah; Jan H. Landsberg

Potent marine neurotoxins known as brevetoxins are produced by the ‘red tide’ dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies. Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.


Journal of Mammalogy | 1998

Prey and Feeding Patterns of Resident Bottlenose Dolphins (Tursiops truncatus) in Sarasota Bay, Florida

Nélio B. Barros; Randall S. Wells

Stomach contents of a resident community of bottlenose dolphins ( Tursiops truncatus ) from the Sarasota Bay area of the westcentral coast of Florida were studied to examine potential factors leading to patterns of habitat use. Composition and size of prey were analyzed and correlated with feeding behavior of individual dolphins of known histories. Examination of stomach contents of 16 stranded dolphins revealed a diet composed exclusively of fish (蠅15 species), most of which were associated with seagrasses in varying degrees. Observational records for 蠄21 years showed that feeding typically occurred in shallow (2–3 m) waters and in the vicinity of seagrasses in 23% of cases. Dolphins usually fed alone or in small groups and on non-obligate schooling prey. The main species of prey were soniferous, an indication that passive listening may be important in detection of prey. The close agreement between species of fishes represented in stomach contents and habitat of prey, as indicated by observations of feeding, suggests that analysis of stomach contents is a reasonable approach for studying prey and feeding patterns of dolphins. Meadows of seagrass are one of the habitats of importance to dolphins in the Sarasota Bay area, and their protection is important for conservation of these animals.


Systematic Parasitology | 2005

Evidence for a new species of Anisakis Dujardin, 1845: morphological description and genetic relationships between congeners (Nematoda: Anisakidae)

Simonetta Mattiucci; Giuseppe Nascetti; Murray D. Dailey; Stephen C. Webb; Nélio B. Barros; R. Cianchi; Luciano Bullini

In the present study, a new biological species of Anisakis Dujardin, 1845, was detected in Kogia breviceps and K. sima from West Atlantic waters (coast of Florida) on the basis of 19 (nuclear) structural genes studied by multilocus allozyme electrophoresis. Fixed allele differences at 11 enzyme loci were found between specimens of both adults and larvae of the new species and the other Anisakis spp. tested. Reproductive isolation from A. brevispiculata Dollfus, 1968 was demonstrated by the lack of hybrid or recombinant genotypes in mixed infections in K. breviceps. Genetic distance of the new species from its closest relative, A. brevispiculata, was DNei=0.79. The new species is morphologically different from the other species which have been genetically characterised and from the other Anisakis retained by Davey (1971) as valid or as species inquirendae: the name of Anisakis paggiae n. sp. is proposed for the new taxon. Anisakis Type II larvae (sensu Berland, 1961) from the European hake Merluccius merluccius in the northeastern Atlantic Ocean (Galician coast) and from the scabbard fish Aphanopus carbo in Central Atlantic waters (off Madeira), were identified as A. paggiae n. sp. Its genetic relationships with respect to the seven species previously characterised (A. simplex (Rudolphi, 1809) sensu stricto), A. pegreffii Campana-Rouget & Biocca, 1955, A. simplex, (A. typica (Diesing, 1860), A. ziphidarum Paggi et al., 1998, A. physeteris Baylis, 1923 and A. brevispiculata) were also inferred. Overall, a low genetic identity was detected at allozyme level between the eight Anisakis species. Interspecific genetic identity ranged from INei=0.68, between the sibling species of the A. simplex complex, to INei=0.00 (no alleles shared at the considered loci) when A. physeteris, A. brevispiculata and the new species were compared with the other species of the genus. Concordant topologies were obtained using both UPGMA and NJ tree analyses for the considered species. In both analyses, A. paggiae n. sp. clustered with A. brevispiculata. They also indciated two main clades, the first including A. physeteris, A. brevispiculata and A. paggiae n. sp., the second containing all of the remaining species (i.e. A. simplex (s.s.), A. pegreffii, A. simplex, A. typica and A. ziphidarum). A deep separation between these two main Anisakis clades, also supported by high bootstrap values at the major nodes, was apparent. This is also supported by differences in adult and larval morphology, as well as with respect to their main definitive hosts. A morphological key for distinguishing adult A. paggiae n. sp., A. physeteris and A. brevispiculata is presented. Allozyme markers for the identification of any life-history stage of the Anisakis spp. so far studied, as well as ecological data on their definitive host preferences and geographical distribution, are updated.


Frontiers in Endocrinology | 2013

Evaluation of Potential Protective Factors Against Metabolic Syndrome in Bottlenose Dolphins: Feeding and Activity Patterns of Dolphins in Sarasota Bay, Florida

Randall S. Wells; Katherine McHugh; David C. Douglas; Steve Shippee; Elizabeth J. Berens McCabe; Nélio B. Barros; Goldie T. Phillips

Free-ranging bottlenose dolphins (Tursiops truncatus) living in Sarasota Bay, Florida appear to have a lower risk of developing insulin resistance and metabolic syndrome compared to a group of dolphins managed under human care. Similar to humans, differences in diet and activity cycles between these groups may explain why Sarasota dolphins have lower insulin, glucose, and lipids. To identify potential protective factors against metabolic syndrome, existing and new data were incorporated to describe feeding and activity patterns of the Sarasota Bay wild dolphin community. Sarasota dolphins eat a wide variety of live fish and spend 10–20% of daylight hours foraging and feeding. Feeding occurs throughout the day, with the dolphins eating small proportions of their total daily intake in brief bouts. The natural pattern of wild dolphins is to feed as necessary and possible at any time of the day or night. Wild dolphins rarely eat dead fish or consume large amounts of prey in concentrated time periods. Wild dolphins are active throughout the day and night; they may engage in bouts of each key activity category at any time during daytime. Dive patterns of radio-tagged dolphins varied only slightly with time of day. Travel rates may be slightly lower at night, suggesting a diurnal rhythm, albeit not one involving complete, extended rest. In comparison, the managed dolphins are older; often fed a smaller variety of frozen-thawed fish types; fed fish species not in their natural diet; feedings and engaged activities are often during the day; and they are fed larger but fewer meals. In summary, potential protective factors against metabolic syndrome in dolphins may include young age, activity, and small meals fed throughout the day and night, and specific fish nutrients. These protective factors against insulin resistance and type 2 diabetes are similar to those reported in humans. Further studies may benefit humans and dolphins.


Biology Letters | 2013

Stranded dolphin stomach contents represent the free-ranging population's diet

Glenn Dunshea; Nélio B. Barros; Elizabeth J. Berens McCabe; Nicholas J. Gales; Mark A. Hindell; Simon N. Jarman; Randall S. Wells

Diet is a fundamental aspect of animal ecology. Cetacean prey species are generally identified by examining stomach contents of stranded individuals. Critical uncertainty in these studies is whether samples from stranded animals are representative of the diet of free-ranging animals. Over two summers, we collected faecal and gastric samples from healthy free-ranging individuals of an extensively studied bottlenose dolphin population. These samples were analysed by molecular prey detection and these data compared with stomach contents data derived from stranded dolphins from the same population collected over 22 years. There was a remarkable consistency in the prey species composition and relative amounts between the two datasets. The conclusions of past stomach contents studies regarding dolphin habitat associations, prey selection and proposed foraging mechanisms are supported by molecular data from live animals and the combined dataset. This is the first explicit test of the validity of stomach contents analysis for accurate population-scale diet determination of an inshore cetacean.


Bulletin of Entomological Research | 2008

Pseudogenes and DNA-based diet analyses: a cautionary tale from a relatively well sampled predator-prey system

Glenn Dunshea; Nélio B. Barros; Randall S. Wells; Nicholas J. Gales; Mark A. Hindell; Simon N. Jarman

Mitochondrial ribosomal DNA is commonly used in DNA-based dietary analyses. In such studies, these sequences are generally assumed to be the only version present in DNA of the organism of interest. However, nuclear pseudogenes that display variable similarity to the mitochondrial versions are common in many taxa. The presence of nuclear pseudogenes that co-amplify with their mitochondrial paralogues can lead to several possible confounding interpretations when applied to estimating animal diet. Here, we investigate the occurrence of nuclear pseudogenes in fecal samples taken from bottlenose dolphins (Tursiops truncatus) that were assayed for prey DNA with a universal primer technique. We found pseudogenes in 13 of 15 samples and 1-5 pseudogene haplotypes per sample representing 5-100% of all amplicons produced. The proportion of amplicons that were pseudogenes and the diversity of prey DNA recovered per sample were highly variable and appear to be related to PCR cycling characteristics. This is a well-sampled system where we can reliably identify the putative pseudogenes and separate them from their mitochondrial paralogues using a number of recommended means. In many other cases, it would be virtually impossible to determine whether a putative prey sequence is actually a pseudogene derived from either the predator or prey DNA. The implications of this for DNA-based dietary studies, in general, are discussed.


Nature | 2005

Red tides and marine mammal mortalities: Unexpected brevetoxin vectors may account for deaths long after or remote from an algal bloom

Leanne J. Flewelling; Jerome Naar; Jay P. Abbott; Daniel G. Baden; Nélio B. Barros; Gregory D. Bossart; Marie-Yasmine D. Bottein; Daniel G. Hammond; Elsa M. Haubold; Cynthia A. Heil; Michael S. Henry; Henry M. Jacocks; Tod A. Leighfield; Richard H. Pierce; Thomas D. Pitchford; Sentiel A. Rommel; Paula S. Scott; Karen A. Steidinger; Earnest W. Truby; Frances M. Van Dolah; Jan H. Landsberg

Potent marine neurotoxins known as brevetoxins are produced by the ‘red tide’ dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies. Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.


Oecologia | 2015

Individual specialization in the foraging habits of female bottlenose dolphins living in a trophically diverse and habitat rich estuary

Sam Rossman; Peggy H. Ostrom; Megan Stolen; Nélio B. Barros; Hasand Gandhi; Craig A. Stricker; Randall S. Wells

We examine individual specialization in foraging habits (foraging habitat and trophic level) of female bottlenose dolphins (Tursiops truncatus) resident in Sarasota Bay, Florida, USA, by analyzing time series of stable isotope (δ15N and δ13C) values in sequential growth layer groups within teeth. The isotope data provide a chronology of foraging habits over the lifetime of the individual and allowed us to show that female bottlenose dolphins exhibit a high degree of individual specialization in both foraging habitat and trophic level. The foraging habits used by adult females are similar to those they used as calves and may be passed down from mother to calf through social learning. We also characterized the foraging habits and home range of each individual by constructing standard ellipses from isotope values and dolphin sightings data (latitude and longitude), respectively. These data show that Sarasota Bay bottlenose dolphins forage within a subset of the habitats in which they are observed. Moreover, females with similar observational standard ellipses often possessed different foraging specializations. Female bottlenose dolphins may demonstrate individual specialization in foraging habits because it reduces some of the cost of living in groups, such as competition for prey.


PLOS ONE | 2017

A common bottlenose dolphin (Tursiops truncatus) prey handling technique for marine catfish (Ariidae) in the northern Gulf of Mexico

Errol I. Ronje; Kevin P. Barry; Carrie Sinclair; Mark A. Grace; Nélio B. Barros; Jason Allen; Brian C. Balmer; Anna Panike; Christina Toms; Keith D. Mullin; Randall S. Wells

Few accounts describe predator-prey interactions between common bottlenose dolphins (Tursiops truncatus Montagu 1821) and marine catfish (Ariopsis felis Linnaeus 1766, Bagre marinus Mitchill 1815). Over the course of 50,167 sightings of bottlenose dolphin groups in Mississippi Sound and along the Florida coast of the Gulf of Mexico, severed catfish heads were found floating and exhibiting movements at the surface in close proximity to 13 dolphin groups that demonstrated feeding behavior. These observations prompted a multi-disciplinary approach to study the predator-prey relationship between bottlenose dolphins and marine catfish. A review was conducted of bottlenose dolphin visual survey data and dorsal fin photographs from sightings where severed catfish heads were observed. Recovered severed catfish heads were preserved and studied, whole marine catfish were collected and examined, and stranding network pathology reports were reviewed for references to injuries related to fish spines. Photographic identification analysis confirms eight dolphins associated with severed catfish heads were present in three such sightings across an approximately 350 km expanse of coast between the Mississippi Sound and Saint Joseph Bay, FL. An examination of the severed catfish heads indicated interaction with dolphins, and fresh-caught whole hardhead catfish (A. felis) were examined to estimate the presumed total length of the catfish before decapitation. Thirty-eight instances of significant trauma or death in dolphins attributed to ingesting whole marine catfish were documented in stranding records collected from the southeastern United States of America. Bottlenose dolphins typically adhere to a ram-feeding strategy for prey capture followed by whole prey ingestion; however, marine catfish skull morphology may pose a consumption hazard due to rigid spines that can puncture and migrate through soft tissue, prompting a prey handling technique for certain dolphins, facilitating consumption of the posterior portion of the fish without the head.


Nature | 2005

Red tides and marine mammal mortalities: Brevetoxicosis

Leanne J. Flewelling; Jerome Naar; Jay P. Abbott; Daniel G. Baden; Nélio B. Barros; Gregory D. Bossart; Marie-Yasmine D. Bottein; Daniel G. Hammond; Elsa M. Haubold; Cynthia A. Heil; Michael S. Henry; Henry M. Jacocks; Tod A. Leighfield; Richard H. Pierce; Thomas D. Pitchford; Sentiel A. Rommel; Paula S. Scott; Karen A. Steidinger; Earnest W. Truby; Frances M. Van Dolah; Jan H. Landsberg

Potent marine neurotoxins known as brevetoxins are produced by the ‘red tide’ dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies. Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.

Collaboration


Dive into the Nélio B. Barros's collaboration.

Top Co-Authors

Avatar

Randall S. Wells

Chicago Zoological Society

View shared research outputs
Top Co-Authors

Avatar

Peggy H. Ostrom

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Sam Rossman

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Craig A. Stricker

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Cynthia A. Heil

Florida Fish and Wildlife Conservation Commission

View shared research outputs
Top Co-Authors

Avatar

Daniel G. Hammond

Florida Fish and Wildlife Conservation Commission

View shared research outputs
Top Co-Authors

Avatar

Earnest W. Truby

Florida Department of Environmental Protection

View shared research outputs
Top Co-Authors

Avatar

Elsa M. Haubold

Florida Fish and Wildlife Conservation Commission

View shared research outputs
Top Co-Authors

Avatar

Frances M. Van Dolah

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Gregory D. Bossart

Florida Atlantic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge