Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nellie Y. Loh is active.

Publication


Featured researches published by Nellie Y. Loh.


Laboratory Animals | 2010

Establishing normal plasma and 24-hour urinary biochemistry ranges in C3H, BALB/c and C57BL/6J mice following acclimatization in metabolic cages.

Michael Stechman; Bushra Ahmad; Nellie Y. Loh; Anita Reed; Michelle Stewart; Sara Wells; Tertius Hough; Liz Bentley; Roger D. Cox; Steve D.M. Brown; Rajesh V. Thakker

Physiological studies of mice are facilitated by normal plasma and 24-hour urinary reference ranges, but variability of these parameters may increase due to stress that is induced by housing in metabolic cages. We assessed daily weight, food and water intake, urine volume and final day measurements of the following: plasma sodium, potassium, chloride, urea, creatinine, calcium, phosphate, alkaline phosphatase, albumin, cholesterol and glucose; and urinary sodium, potassium, calcium, phosphate, glucose and protein in 24- to 30-week-old C3H/HeH, BALB/cAnNCrl and C57BL/6J mice. Between 15 and 20 mice of each sex from all three strains were individually housed in metabolic cages with ad libitum feeding for up to seven days. Acclimatization was evaluated using general linear modelling for repeated measures and comparison of biochemical data was by unpaired t-test and analysis of variance (SPSS version 12.0.1). Following an initial 5–10% fall in body weight, daily dietary intake, urinary output and weight in all three strains reached stable values after 3–4 days of confinement. Significant differences in plasma glucose, cholesterol, urea, chloride, calcium and albumin, and urinary glucose, sodium, phosphate, calcium and protein were observed between strains and genders. Thus, these results provide normal reference values for plasma and urinary biochemistry in three strains housed in metabolic cages and demonstrate that 3–4 days are required to reach equilibrium in metabolic cage studies. These variations due to strain and gender have significant implications for selecting the appropriate strain upon which to breed genetically-altered models of metabolic and renal disease.


American Journal of Physiology-renal Physiology | 2009

Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure.

Andrew Smith; Anita Reed; Nellie Y. Loh; Rajesh V. Thakker; Jonathan D. Lippiat

Mutations of the human CLCN5 gene, which encodes the CLC-5 Cl−/H+ exchanger, lead to Dents disease. Mutations result in functional defects that range from moderate reductions to complete loss of whole cell currents, although the severity of the functional defect rarely correlates with the severity of the disease. To further elucidate the basis of CLC-5 mutations causing Dents disease, we examined the functional and cell biological consequences of seven previously reported missense mutants, utilizing electrophysiological and cell biological techniques. This revealed three classes of Dents disease-causing CLC-5 mutations. Class 1 mutations lead to endoplasmic reticulum retention and degradation of CLC-5. Class 2 mutations appear to have little effect on subcellular distribution of CLC-5 but cause defective function resulting in severe defects in endosomal acidification. Class 3 mutations lead to alterations in the endosomal distribution of CLC-5 but are otherwise able to support endosomal acidification. Molecular modeling demonstrates a structural basis that may underlie the nature of the defect resulting from each mutation with each class occupying discrete regions of the protein quaternary structure. Thus these results demonstrate that the cell biological consequences of CLC-5 mutations are heterogeneous and can be classified into three major groups and that a correlation between the nature of the defect and the location of the mutation in the structure may be drawn. This model may prove to be useful as a tool to aid in the diagnosis and future therapeutic intervention of the disease.


Cell Metabolism | 2015

LRP5 Regulates Human Body Fat Distribution by Modulating Adipose Progenitor Biology in a Dose- and Depot-Specific Fashion

Nellie Y. Loh; Matt Neville; Kyriakoula Marinou; Sarah A. Hardcastle; Barbara A. Fielding; Emma L. Duncan; Mark I. McCarthy; Jonathan H Tobias; Celia L Gregson; Fredrik Karpe; Constantinos Christodoulides

Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders.


Nephron Physiology | 2009

Mutational Analysis of CLC-5, Cofilin and CLC-4 in Patients with Dent’s Disease

Fiona Wu; Anita Reed; Sian Williams; Nellie Y. Loh; Jonathan D. Lippiat; Paul T. Christie; Oliver Large; Alberto Bettinelli; Michael J. Dillon; Noemia Perli Goldraich; Bernd Hoppe; Karl Lhotta; Chantal Loirat; Rayaz A. Malik; Delphine Morel; Peter Kotanko; Bernard Roussel; Dvora Rubinger; Connie Schrander-Stumpel; Erkin Serdaroglu; M. Andrew Nesbit; Frances M. Ashcroft; Rajesh V. Thakker

Background/Aims: Dent’s disease is caused by mutations in the chloride/proton antiporter, CLC-5, or oculo-cerebro-renal-syndrome-of-Lowe (OCRL1) genes. Methods: Eighteen probands with Dent’s disease were investigated for mutations in CLC-5 and two of its interacting proteins, CLC-4 and cofilin. Wild-type and mutant CLC-5s were assessed in kidney cells. Urinary calcium excretion following an oral calcium challenge was studied in one family. Results: Seven different CLC-5 mutations consisting of two nonsense mutations (Arg347Stop and Arg718Stop), two missense mutations (Ser244Leu and Arg516Trp), one intron 3 donor splice site mutation, one deletion-insertion (nt930delTCinsA) and an in-frame deletion (523delVal) were identified in 8 patients. In the remaining 10 patients, DNA sequence abnormalities were not detected in the coding regions of CLC-4 or cofilin, and were independently excluded for OCRL1. Patients with CLC-5 mutations were phenotypically similar to those without. The donor splice site CLC-5 mutation resulted in exon 3 skipping. Electrophysiology demonstrated that the 523delVal CLC-5 mutation abolished CLC-5-mediated chloride conductance. Sixty percent of women with the CLC-5 deletion-insertion had nephrolithiasis, although calcium excretion before and after oral calcium challenge was similar to that in unaffected females. Conclusions: Three novel CLC-5 mutations were identified, and mutations in OCRL1, CLC-4 and cofilin excluded in causing Dent’s disease in this patient cohort.


Molecular and Cellular Biology | 2001

Role of beta-dystrobrevin in nonmuscle dystrophin-associated protein complex-like complexes in kidney and liver.

Nellie Y. Loh; Daniela Nebenius-Oosthuizen; Derek J. Blake; Andrew Smith; Kay E. Davies

ABSTRACT β-Dystrobrevin is a dystrophin-related and -associated protein that is highly expressed in brain, kidney, and liver. Recent studies with the kidneys of the mdx3Cv mouse, which lacks all dystrophin isoforms, suggest that β-dystrobrevin, and not the dystrophin isoforms, may be the key component in the assembly of complexes similar to the muscle dystrophin-associated protein complexes (DPC) in nonmuscle tissues. To understand the role of β-dystrobrevin in the function of nonmuscle tissues, we generated β-dystrobrevin-deficient (dtnb−/−) mice by gene targeting. dtnb −/− mice are healthy, fertile, and normal in appearance. No β-dystrobrevin was detected in these mice by Western blotting or immunocytochemistry. In addition, the levels of several β-dystrobrevin-interacting proteins, namely Dp71 isoforms and the syntrophins, were greatly reduced from the basal membranes of kidney tubules and liver sinusoids and on Western blots of crude kidney and liver microsomes of β-dystrobrevin-deficient mice. However, no abnormality was detected in the ultrastructure of membranes of kidney and liver cells or in the renal function of these mice. β-Dystrobrevin may therefore be an anchor or scaffold for Dp71 and syntrophin isoforms, as well as other associating proteins at the basal membranes of kidney and liver, but is not necessary for the normal function of these mice.


PLOS ONE | 2013

Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5.

Nellie Y. Loh; Liz Bentley; Henrik Dimke; Sjoerd Verkaart; Paolo Tammaro; Caroline M. Gorvin; Michael Stechman; Bushra Ahmad; Fadil M. Hannan; Sian Piret; Holly Evans; Ilaria Bellantuono; Tertius Hough; William D. Fraser; Joost G.J. Hoenderop; Frances M. Ashcroft; Steve D.M. Brown; René J. M. Bindels; Roger D. Cox; Rajesh V. Thakker

Hypercalciuria is a major cause of nephrolithiasis, and is a common and complex disorder involving genetic and environmental factors. Identification of genetic factors for monogenic forms of hypercalciuria is hampered by the limited availability of large families, and to facilitate such studies, we screened for hypercalciuria in mice from an N-ethyl-N-nitrosourea mutagenesis programme. We identified a mouse with autosomal dominant hypercalciuria (HCALC1). Linkage studies mapped the Hcalc1 locus to a 11.94 Mb region on chromosome 6 containing the transient receptor potential cation channel, subfamily V, members 5 (Trpv5) and 6 (Trpv6) genes. DNA sequence analysis of coding regions, intron-exon boundaries and promoters of Trpv5 and Trpv6 identified a novel T to C transition in codon 682 of TRPV5, mutating a conserved serine to a proline (S682P). Compared to wild-type littermates, heterozygous (Trpv5 682P/+) and homozygous (Trpv5 682P/682P) mutant mice had hypercalciuria, polyuria, hyperphosphaturia and a more acidic urine, and ∼10% of males developed tubulointerstitial nephritis. Trpv5 682P/682P mice also had normal plasma parathyroid hormone but increased 1,25-dihydroxyvitamin D3 concentrations without increased bone resorption, consistent with a renal defect for the hypercalciuria. Expression of the S682P mutation in human embryonic kidney cells revealed that TRPV5-S682P-expressing cells had a lower baseline intracellular calcium concentration than wild-type TRPV5-expressing cells, suggesting an altered calcium permeability. Immunohistological studies revealed a selective decrease in TRPV5-expression from the renal distal convoluted tubules of Trpv5 682P/+ and Trpv5 682P/682P mice consistent with a trafficking defect. In addition, Trpv5682P/682P mice had a reduction in renal expression of the intracellular calcium-binding protein, calbindin-D28K, consistent with a specific defect in TRPV5-mediated renal calcium reabsorption. Thus, our findings indicate that the TRPV5 S682P mutant is functionally significant and study of HCALC1, a novel model for autosomal dominant hypercalciuria, may help further our understanding of renal calcium reabsorption and hypercalciuria.


Mammalian Genome | 1998

Genomic organization and refined mapping of the mouse beta-dystrobrevin gene

Nellie Y. Loh; Helen J. Ambrose; Lisa M. Guay-Woodford; Srimita DasGupta; Ralph Nawrotzki; Derek J. Blake; Kay E. Davies

Abstract.β-Dystrobrevin, a dystrophin-related protein that is expressed in non-muscle tissues, is highly homologous to α-dystrobrevin, a member of the dystrophin-associated protein complex (DPC). β-Dystrobrevin associates with Dp71 and syntrophin and is believed to have a role in non-muscle DPCs. Here we report the characterization and mapping of the mouse β-dystrobrevin gene. The mouse β-dystrobrevin gene is organized into 21 exons spanning over 130 kb of DNA. We provide evidence that this gene is transcribed from at least two promoter regions but appears to utilize a common translation initiation site. We show that the similarity between β-dystrobrevin and α-dystrobrevin is reflected in the conservation of their exon-intron junctions. β-Dystrobrevin has been localized to proximal mouse Chromosome (Chr) 12 by backcross mapping. A database search revealed that two mouse genetic diseases involving tissues expressing β-dystrobrevin have been mapped to this region, namely, congenital polycystic kidneys (cpk) and fatty liver dystrophy (fld). However, refined mapping analysis has excluded β-dystrobrevin as a candidate gene for either disease.


PLOS ONE | 2016

Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway.

Christopher T. Esapa; Sian Piret; M. Andrew Nesbit; Nellie Y. Loh; Gethin P. Thomas; Peter I. Croucher; Matthew A. Brown; Steve D. M. Brown; Roger D. Cox; Rajesh V. Thakker

Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in which loss of plasma membrane NPR3 expression results in increased MAPK pathway activation, causing elongation of the vertebrae and resulting in kyphosis.


PLOS ONE | 2012

A mouse model of early-onset renal failure due to a xanthine dehydrogenase nonsense mutation.

Sian Piret; Christopher T. Esapa; Caroline M. Gorvin; Rosie Head; Nellie Y. Loh; Olivier Devuyst; Gethin P. Thomas; Steve D.M. Brown; Matthew A. Brown; Peter I. Croucher; Roger D. Cox; Rajesh V. Thakker

Chronic kidney disease (CKD) is characterized by renal fibrosis that can lead to end-stage renal failure, and studies have supported a strong genetic influence on the risk of developing CKD. However, investigations of the underlying molecular mechanisms are hampered by the lack of suitable hereditary models in animals. We therefore sought to establish hereditary mouse models for CKD and renal fibrosis by investigating mice treated with the chemical mutagen N-ethyl-N-nitrosourea, and identified a mouse with autosomal recessive renal failure, designated RENF. Three-week old RENF mice were smaller than their littermates, whereas at birth they had been of similar size. RENF mice, at 4-weeks of age, had elevated concentrations of plasma urea and creatinine, indicating renal failure, which was associated with small and irregularly shaped kidneys. Genetic studies using DNA from 10 affected mice and 91 single nucleotide polymorphisms mapped the Renf locus to a 5.8Mbp region on chromosome 17E1.3. DNA sequencing of the xanthine dehydrogenase (Xdh) gene revealed a nonsense mutation at codon 26 that co-segregated with affected RENF mice. The Xdh mutation resulted in loss of hepatic XDH and renal Cyclooxygenase-2 (COX-2) expression. XDH mutations in man cause xanthinuria with undetectable plasma uric acid levels and three RENF mice had plasma uric acid levels below the limit of detection. Histological analysis of RENF kidney sections revealed abnormal arrangement of glomeruli, intratubular casts, cellular infiltration in the interstitial space, and interstitial fibrosis. TUNEL analysis of RENF kidney sections showed extensive apoptosis predominantly affecting the tubules. Thus, we have established a mouse model for autosomal recessive early-onset renal failure due to a nonsense mutation in Xdh that is a model for xanthinuria in man. This mouse model could help to increase our understanding of the molecular mechanisms associated with renal fibrosis and the specific roles of XDH and uric acid.


Proceedings of the National Academy of Sciences of the United States of America | 1998

beta-dystrobrevin, a member of the dystrophin-related protein family

Derek J. Blake; Ralph Nawrotzki; Nellie Y. Loh; Dariusz C. Górecki; Kay E. Davies

Collaboration


Dive into the Nellie Y. Loh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger D. Cox

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liz Bentley

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Tertius Hough

Medical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge