Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nelson C. Soares is active.

Publication


Featured researches published by Nelson C. Soares.


Antimicrobial Agents and Chemotherapy | 2011

Horizontal Transfer of the OXA-24 Carbapenemase Gene via Outer Membrane Vesicles: a New Mechanism of Dissemination of Carbapenem Resistance Genes in Acinetobacter baumannii

Carlos Rumbo; Esteban Fernández-Moreira; María Merino; Margarita Poza; José Antonio Forteza Méndez; Nelson C. Soares; Alejandro Mosquera; Fernando Chaves; Germán Bou

ABSTRACT The resistance of Acinetobacter baumannii strains to carbapenems is a worrying problem in hospital settings. The main mechanism of carbapenem resistance is the expression of β-lactamases (metalloenzymes or class D enzymes). The mechanisms of the dissemination of these genes among A. baumannii strains are not fully understood. In this study we used two carbapenem-resistant clinical strains of A. baumannii (AbH12O-A2 and AbH12O-CU3) expressing the plasmid-borne blaOXA-24 gene (plasmids pMMA2 and pMMCU3, respectively) to demonstrate that A. baumannii releases outer membrane vesicles (OMVs) during in vitro growth. The use of hybridization studies enabled us to show that these OMVs harbored the blaOXA-24 gene. The incubation of these OMVs with the carbapenem-susceptible A. baumannii ATCC 17978 host strain yielded full resistance to carbapenems. The presence of the original plasmids harboring the blaOXA-24 gene was detected in strain ATCC 17978 after the transformation of OMVs. New OMVs harboring blaOXA-24 were released by A. baumannii ATCC 17978 after it was transformed with the original OMV-mediated plasmids, indicating the universality of the process. We present the first experimental evidence that clinical isolates of A. baumannii may release OMVs as a mechanism of horizontal gene transfer whereby carbapenem resistance genes are delivered to surrounding A. baumannii bacterial isolates.


Journal of Proteome Research | 2011

Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism.

Maria P. Cabral; Nelson C. Soares; Jesús Aranda; José R Parreira; Carlos Rumbo; Margarita Poza; Jaione Valle Turrillas; Valentina Calamia; Iñigo Lasa; Germán Bou

Biofilm formation is one of the main causes for the persistence of Acinetobacter baumannii, a pathogen associated with severe infections and outbreaks in hospitals. Here, we performed comparative proteomic analyses (2D-DIGE and MALDI-TOF/TOF and iTRAQ/SCX-LC-MS/MS) of cells at three different conditions: exponential, late stationary phase, and biofilms. These results were compared with alterations in the proteome resulting from exposure to a biofilm inhibitory compound (salicylate). Using this multiple-approach strategy, proteomic patterns showed a unique lifestyle for A. baumannii biofilms and novel associated proteins. Several cell surface proteins (such as CarO, OmpA, OprD-like, DcaP-like, PstS, LysM, and Omp33), as well as those involved in histidine metabolism (like Urocanase), were found to be implicated in biofilm formation, this being confirmed by gene disruption. Although l-His uptake triggered biofilms efficiently in wild-type A. baumannii, no effect was observed in Urocanase and OmpA mutants, while a slight increase was observed in a CarO deficient strain. We conclude that Urocanase plays a crucial role in histidine metabolism leading to biofilm formation and that OmpA and CarO can act as channels for L-His uptake. Finally, we propose a model in which novel proteins are suggested for the first time as targets for preventing the formation of A. baumannii biofilms.


Frontiers in Microbiology | 2015

Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog

Suereta Fortuin; Gisele G. Tomazella; Nagarjuna Nagaraj; Samantha L. Sampson; Nicolaas Gey Van Pittius; Nelson C. Soares; Harald G. Wiker; Gustavo A. de Souza; Robin M. Warren

Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis.


Journal of Proteome Research | 2010

Associating Growth-Phase-Related Changes in the Proteome of Acinetobacter baumannii with Increased Resistance to Oxidative Stress

Nelson C. Soares; Maria P. Cabral; Carmen Gayoso; Susana Mallo; Patricia Rodríguez-Velo; Esteban Fernández-Moreira; Germán Bou

Acinetobacter baumannii is an opportunistic pathogen that has been associated with severe infections and outbreaks in hospitals. At present, very little is known about the biology of this bacterium, particularly as regards mechanisms of adaptation, persistence and virulence. To investigate the growth phase-dependent regulation of proteins in this microorganism, we analyzed the proteomic pattern of A. baumannii ATCC 17978 at different stages of in vitro growth. In this study, proteomics analyses were conducted using 2-DE and MALDI-TOF/TOF complemented by iTRAQ LC-MS/MS. Here we have identified 107 differentially expressed proteins. We highlight the induction of proteins associated with signaling, putative virulence factors and response to stress (including oxidative stress). We also present evidence that ROS (O(2)(-) and OH(-)) and RNI (ONOO(-)) accumulate during late stages of growth. Further assays demonstrated that stationary cells survive at high concentrations of H(2)O(2) (30 mM), the O(2)(-) donor menadione (500 muM) or the NO donor sodium nitroprusside (1 mM), and showed a higher survival rate against several bactericidal antibiotics. The growth phase-dependent changes observed in the A. baumannii proteome are discussed within a context of adaptive biological responses, including those related to ROS and RNI stress.


Journal of Proteome Research | 2012

Extracellular proteome of a highly invasive multidrug-resistant clinical strain of Acinetobacter baumannii.

José Antonio Forteza Méndez; Nelson C. Soares; Jesús Mateos; Carmen Gayoso; Carlos Rumbo; Jesús Aranda; María Tomás; Germán Bou

The study of the extracellular proteomes of pathogenic bacteria is essential for gaining insights into the mechanisms of pathogenesis and for the identification of virulence factors. Through the use of different proteomic approaches, namely Nano-LC and 2DE combined with MALDI-TOF/TOF, we have characterized the extracellular proteome of a highly invasive, multidrug-resistant strain of A. baumannii (clone AbH12O-A2). This study focused on two main protein fractions of the extracellular proteome: proteins that are exported by outer membrane vesicles (OMVs) and freely soluble extracellular proteins (FSEPs) present in the culture medium of A. baumannii. Herein, a total of 179 nonredundant proteins were identified in the OMV protein fraction and a total of 148 nonredundant proteins were identified in FSEP fraction. Of the OMV proteins, 39 were associated with pathogenesis and virulence, including proteins associated with attachment to host cells (e.g., CsuE, CsuB, CsuA/B) and specialized secretion systems for delivery of virulence factors (e.g., P. pilus assembly and FilF), whereas the FSEP fraction possesses extracellular enzymes with degradative activity, such as alkaline metalloprotease. Furthermore, among the FSEP we have detected at least 18 proteins with a known role in oxidative stress response (e.g., catalase, thioredoxin, oxidoreductase, superoxide dismutase). Further assays demonstrated that in the presence of FSEPs, bacterial cells withstand much higher concentrations of H2O2 showing higher survival rate (approximately 2.5 fold) against macrophages. In this study we have identified an unprecedented number of novel extracellular proteins of A. baumannii and we provide insight into their potential role in relevant processes such as oxidative stress response and defense against macrophage attack.


Journal of Proteome Research | 2009

Associating Wound-Related Changes in the Apoplast Proteome of Medicago with Early Steps in the ROS Signal-Transduction Pathway

Nelson C. Soares; Rita Francisco; Jesus Maria Vielba; Cândido Pinto Ricardo; Phil A. Jackson

Early wound-related changes in the leaf apoplast proteome of Medicago truncatula have been characterized by 2-DE and MALDI-TOF/TOF and the differential expression of 28/110 extracellular proteins could be reproducibly observed 6 h after wounding. Wounding induced an initial (0-30 min) burst of O2-, followed by a later (3-6 h) production of O2- and H2O2. The infiltration of 5 microM DPI<or=3 min after wounding inhibited both phases of the oxidative burst and suppressed wound-regulated changes in 9/28 extracellular proteins. DPI infiltrated 15 min after wounding only partially inhibited early O2- production and was ineffective in suppressing wound-related changes in these proteins. This strongly suggests that in wounded Medicago, rapid O2- is required for mobilizing the downstream (3-6 h), differential expression of several extracellular proteins. Further studies with DPI and exogenous sources of ROS supported the regulation of these proteins within early, wound-related ROS-signaling events. The study forms the basis for associating wound-related changes in the apoplast proteome with ROS-dependent and ROS-independent pathways. Proteins mobilized within the ROS-dependent pathway were largely ionically bound to cell walls and included SODs, peroxidases and germin-like proteins, suggesting their involvement within wound-activated, ROS regulatory loops.


Proteome Science | 2009

2-DE analysis indicates that Acinetobacter baumannii displays a robust and versatile metabolism

Nelson C. Soares; Maria P. Cabral; José R Parreira; Carmen Gayoso; Maria José Barba; Germán Bou

BackgroundAcinetobacter baumannii is a nosocomial pathogen that has been associated with outbreak infections in hospitals. Despite increasing awareness about this bacterium, its proteome remains poorly characterised, however recently the complete genome of A. baumannii reference strain ATCC 17978 has been sequenced. Here, we have used 2-DE and MALDI-TOF/TOF approach to characterise the proteome of this strain.ResultsThe membrane and cytoplasmatic protein extracts were analysed separately, these analyses revealed the reproducible presence of 239 and 511 membrane and cytoplamatic protein spots, respectively. MALDI-TOF/TOF characterisation identified a total of 192 protein spots (37 membrane and 155 cytoplasmatic) and revealed that the identified membrane proteins were mainly transport-related proteins, whereas the cytoplasmatic proteins were of diverse nature, although mainly related to metabolic processes.ConclusionThis work indicates that A. baumannii has a versatile and robust metabolism and also reveal a number of proteins that may play a key role in the mechanism of drug resistance and virulence. The data obtained complements earlier reports of A. baumannii proteome and provides new tools to increase our knowledge on the protein expression profile of this pathogen.


Infection and Immunity | 2014

The Acinetobacter baumannii Omp33-36 Porin Is a Virulence Factor That Induces Apoptosis and Modulates Autophagy in Human Cells

Carlos Rumbo; María Tomás; Esteban Fernández Moreira; Nelson C. Soares; Micaela Carvajal; Elena Santillana; Alejandro Beceiro; Antonio A. Romero; Germán Bou

ABSTRACT Acinetobacter baumannii is an extracellular opportunistic human pathogen that is becoming increasingly problematic in hospitals. In the present study, we demonstrate that the A. baumannii Omp 33- to 36-kDa protein (Omp33-36) is a porin that acts as a channel for the passage of water. The protein is found on the cell surface and is released along with other porins in the outer membrane vesicles (OMVs). In immune and connective cell tissue, this protein induced apoptosis by activation of caspases and modulation of autophagy, with the consequent accumulation of p62/SQSTM1 (sequestosome 1) and LC3B-II (confirmed by use of autophagy inhibitors). Blockage of autophagy enables the bacterium to persist intracellularly (inside autophagosomes), with the subsequent development of cytotoxicity. Finally, we used macrophages and a mouse model of systemic infection to confirm that Omp33-36 is a virulence factor in A. baumannii. Overall, the study findings show that Omp33-36 plays an important role in the pathogenesis of A. baumannii infections.


Journal of Proteomics | 2014

Ser/Thr/Tyr phosphoproteome characterization of Acinetobacter baumannii: Comparison between a reference strain and a highly invasive multidrug-resistant clinical isolate

Nelson C. Soares; Philipp Spät; José Antonio Forteza Méndez; Kehilwe C. Nakedi; Jesús Aranda; Germán Bou

UNLABELLED In the current study, the Ser/Thr/Tyr phosphoproteomes of two Acinetobacter baumannii strains, reference (ATCC17978) and highly invasive multidrug-resistant clinical isolate (Abh12O-A2) were analyzed using SCX and TiO2 chromatography followed by high resolution mass spectrometry. We detected a total of 201 unique phosphorylation sites (p-sites), and, after manual validation of peptide spectra, 91 high-confidence phosphorylation events (p-events) could be localized to a specific amino acid residue. The percentage distribution of Ser/Thr/Tyr phosphorylation was 68.9% on serine, 24.1% on threonine and 5.2% on tyrosine in ATCC17978, and 70.8% on serine, 25.2% on threonine and 3.8% on tyrosine in AbH12O-A2. Across all identified p-sites, 11 were identified in ATCC17978 only, while 43 were identified in Abh12O-A2 only, and 37 overlapped between the two strains. Here for the first time we describe the phosphoproteome of A. baumanii, and significance of selected phosphorylation sites is discussed in the context of stress/starvation, pathogenicity and drug resistance. BIOLOGICAL SIGNIFICANCE It is now well established that protein phosphorylation on Ser/Thr/Tyr residues is an important post-translational modification in bacteria. Herein we employed SCX and TiO2 chromatographic phosphopeptide enrichment combined with LTQ-Orbitrap mass spectrometric analyses to characterize and establish a qualitative comparison between the Ser/Thr/Tyr phosphoproteomes of two Acinetobacter baumannii strains: a reference strain and a highly invasive multidrug-resistant clinical isolate. We highlight the identification of phosphoproteins with a role in pathogenicity and those involved in drug resistance.


Journal of Proteome Research | 2015

Comparative Reevaluation of FASP and Enhanced FASP Methods by LC–MS/MS

Andrew J. M. Nel; Shaun Garnett; Jonathan M. Blackburn; Nelson C. Soares

Filter-aided sample preparation is a proteomic technique for the preparation and on column proteolysis of proteins. Recently an enhanced FASP protocol was developed that uses deoxycholic acid (DCA) and that reportedly enhances trypsin proteolysis, resulting in increases cytosolic and membrane protein representation. FASP and eFASP were re-evaluated by ultra-high-performance liquid chromatography coupled to a quadrupole mass filter Orbitrap analyzer (Q Exactive). Although there was no difference in trypsin activity, 14,099 and 13,414 peptides, describing 1723 and 1793 protein groups, from Escherichia coli K12 were identified using FASP and eFASP, respectively. Characterization of the physicochemical properties of identified peptides showed no significant differences other than eFASP extracting slightly more basic peptides. At the protein level, both methods extracted essentially the same number of hydrophobic transmembrane helix-containing proteins as well as proteins associated with the cytoplasm or the cytoplasmic and outer membranes. By employing state-of-the-art LC-MS/MS shot gun proteomics, our results indicate that FASP and eFASP showed no significant differences at the protein level. However, because of the slight differences in selectivity at the physicochemical level of peptides, these methods can be seen to be somewhat complementary for analyses of complex peptide mixtures.

Collaboration


Dive into the Nelson C. Soares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Germán Bou

University of A Coruña

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phil A. Jackson

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús Aranda

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge