Nelson J. O'Driscoll
Acadia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nelson J. O'Driscoll.
Environmental Science & Technology | 2013
Meredith G. Clayden; Karen A. Kidd; Brianna Wyn; Jane L. Kirk; Derek C. G. Muir; Nelson J. O'Driscoll
Mercury (Hg) contamination in aquatic systems remains a global concern because the organic form, methyl Hg (MeHg), can biomagnify to harmful concentrations in fish, fish-eating wildlife, and humans. Food web transfer of MeHg has been explored using models of log MeHg versus relative trophic position (nitrogen isotopes, δ(15)N), but regression slopes vary across systems for unknown reasons. In this study, MeHg biomagnification was determined for 11 lake food webs in Kejimkujik National Park, Nova Scotia, Canada, and compared to physical and chemical lake characteristics using principal component and multiple regression analyses. MeHg biomagnification (regression slopes of log MeHg versus baseline-adjusted δ(15)N for fishes and invertebrates) varied significantly across lakes and was higher in systems with lower aqueous nutrient/MeHg/chloride scores. This is one of the largest, consistent data sets available on MeHg biomagnification through temperate lake food webs and the first study to use a principal component and multiple regression approach to understand how lake chemical and physical characteristics interact to affect biomagnification among systems. Overall, our results show that the magnitude of MeHg biomagnification through lake food webs is related to the chemical and physical characteristics of the systems, but the underlying mechanisms warrant further investigation.
Science of The Total Environment | 2015
Birgit M. Braune; John Chételat; Marc Amyot; Tanya M. Brown; Meredith G. Clayden; Marlene Evans; Aaron T. Fisk; Ashley Gaden; Catherine Girard; Alex Hare; Jane L. Kirk; Igor Lehnherr; Robert J. Letcher; Lisa L. Loseto; Robie W. Macdonald; Erin Mann; Bailey C. McMeans; Derek C. G. Muir; Nelson J. O'Driscoll; Alexandre J. Poulain; Kenneth J. Reimer; Gary A. Stern
This review summarizes data and information which have been generated on mercury (Hg) in the marine environment of the Canadian Arctic since the previous Canadian Arctic Contaminants Assessment Report (CACAR) was released in 2003. Much new information has been collected on Hg concentrations in marine water, snow and ice in the Canadian Arctic. The first measurements of methylation rates in Arctic seawater indicate that the water column is an important site for Hg methylation. Arctic marine waters were also found to be a substantial source of gaseous Hg to the atmosphere during the ice-free season. High Hg concentrations have been found in marine snow as a result of deposition following atmospheric mercury depletion events, although much of this Hg is photoreduced and re-emitted back to the atmosphere. The most extensive sampling of marine sediments in the Canadian Arctic was carried out in Hudson Bay where sediment total Hg (THg) concentrations were low compared with other marine regions in the circumpolar Arctic. Mass balance models have been developed to provide quantitative estimates of THg fluxes into and out of the Arctic Ocean and Hudson Bay. Several recent studies on Hg biomagnification have improved our understanding of trophic transfer of Hg through marine food webs. Over the past several decades, Hg concentrations have increased in some marine biota, while other populations showed no temporal change. Marine biota also exhibited considerable geographic variation in Hg concentrations with ringed seals, beluga and polar bears from the Beaufort Sea region having higher Hg concentrations compared with other parts of the Canadian Arctic. The drivers of these variable patterns of Hg bioaccumulation, both regionally and temporally, within the Canadian Arctic remain unclear. Further research is needed to identify the underlying processes including the interplay between biogeochemical and food web processes and climate change.
Environmental Pollution | 2012
Samuel T. Edmonds; Nelson J. O'Driscoll; N. Kirk Hillier; Jonathan L. Atwood; David C. Evers
Rusty blackbirds are undergoing rapid population decline and have elevated Hg concentrations while breeding in the Acadian ecoregion of North America. Factors regulating the bioavailability of methyl-Hg (MeHg) within this populations habitat were determined using water, invertebrates, and blood from adult rusty blackbirds collected for Hg-speciation, along with additional water column parameters: MeHg and THg, dissolved organic carbon, pH, dissolved oxygen, conductivity, redox potential, and temperature. Both DO(2) and pH were negatively related to biota MeHg, while water MeHg concentrations were positively related. Both invertebrate MeHg concentration and %MeHg increased with trophic level. Invertebrate MeHg concentrations were among the greatest reported when compared with those reported elsewhere for wetlands and waterbodies-often several times greater for similar taxa-while percent MeHg of THg were similar. An environment with high bioavailability of MeHg in combination with a high trophic position best explains elevated Hg concentrations for this species regional population.
Science of The Total Environment | 2009
Jonathan R. Hill; Nelson J. O'Driscoll; David R. S. Lean
Water samples were collected from 20 wetland, river and lake sites across Eastern Ontario and Western Quebec to investigate the distribution of methylmercury (MeHg) associated with various size fractions of dissolved organic matter (DOM). Tangential Flow UltraFiltration (TUF) was used to fractionate DOM by nominal molecular size (<0.2 microm, <300 kDa, <30 kDa, <5 kDa and <1 kDa). DOM fluorescence (DOM FL) and absorbance (DOC Abs) were used to quantify DOM photoreactivity and aromaticity in each sample. Significant differences in the size-associated distribution of MeHg, Dissolved Organic Carbon (DOC), DOM FL, and DOM Abs were observed between wetlands, rivers, and lakes. The low molecular weight (LMW) fraction (<5 kDa) in wetlands contained the majority of MeHg (70.0+/-13.8%), DOC (56.1+/-9.4%), and DOM FL (77.4+/-7.5%). DOM FL was also high in the LMW fraction for rivers (60.6+/-25%) and lakes (75.2+/-16.9%). Mean MeHg concentrations in the LMW fraction of lakes (41+/-26 pg L(-1)) and rivers (32+/-19 pg L(-1)) were substantial but much lower than wetlands. Rivers had the highest percentage of methylmercury (38.0+/-23.5%) in the particulate (>0.2 microm) fraction. This research highlights the importance of low molecular weight dissolved organic matter in methylmercury fate. For example, a large proportion of MeHg was found in the LMW weight fractions (mean=47.3+/-25.4%) of the wetlands, rivers, and lakes in this study.
Environmental Pollution | 2013
Tom Sizmur; João Canário; Travis G. Gerwing; Mark L. Mallory; Nelson J. O'Driscoll
Polychaete worms are abundant in many mudflats but their importance to coastal food web Hg biomagnification is not known. We sampled sediments and polychaete worms from mudflats in the Bay of Fundy to investigate the bioaccumulation of mercury (Hg) and methylmercury (MeHg) in the coastal invertebrate food web. Hg concentrations in the sediments were low (<20 μg kg(-1)). Labile Hg (methanol/KOH sediment extraction) in surface sediments (0-1 cm) was positively correlated with Hg bioaccumulation by surface sediment-ingesting polychaetes but, surprisingly, there was a negative correlation between δ(15)N (i.e. trophic level) and THg bioaccumulation factors in polychaete worms. Worms feeding on deeper sediments contained the greatest MeHg concentrations (69.6 μg kg(-1)). Polychaetes are an important vector for Hg biomagnification to the coastal avian food web. This research demonstrates that feeding depth and method of feeding are more important than trophic position or sediment Hg concentrations for predicting Hg bioaccumulation.
Science of The Total Environment | 2015
Meredith G. Clayden; Lilianne M. Arsenault; Karen A. Kidd; Nelson J. O'Driscoll; Mark L. Mallory
Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ(13)C and δ(15)N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web - using the slope of log MeHg versus δ(15)N - was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance.
Science of The Total Environment | 2015
Gretchen L. Lescord; Karen A. Kidd; Jane L. Kirk; Nelson J. O'Driscoll; Xiaowa Wang; Derek C. G. Muir
In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ(13)C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ(15)N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota.
Science of The Total Environment | 2015
E.A. Mann; Mark L. Mallory; Susan E. Ziegler; Robert Tordon; Nelson J. O'Driscoll
Controlled experiments were performed with frozen and melted Arctic snow to quantify relationships between mercury photoreaction kinetics, ultra violet (UV) radiation intensity, and snow ion concentrations. Frozen (-10°C) and melted (4°C) snow samples from three Arctic sites were exposed to UV (280-400 nm) radiation (1.26-5.78 W · m(-2)), and a parabolic relationship was found between reduction rate constants in frozen and melted snow with increasing UV intensity. Total photoreduced mercury in frozen and melted snow increased linearly with greater UV intensity. Snow with the highest concentrations of chloride and iron had larger photoreduction and photooxidation rate constants, while also having the lowest Hg(0) production. Our results indicate that the amount of mercury photoreduction (loss from snow) is the highest at high UV radiation intensities, while the fastest rates of mercury photoreduction occurred at both low and high intensities. This suggests that, assuming all else is equal, earlier Arctic snow melt periods (when UV intensities are less intense) may result in less mercury loss to the atmosphere by photoreduction and flux, since less Hg(0) is photoproduced at lower UV intensities, thereby resulting in potentially greater mercury transport to aquatic systems with snowmelt.
Environmental Toxicology and Chemistry | 2014
Amy Buckland‐Nicks; Kirk Neil Hillier; Trevor S. Avery; Nelson J. O'Driscoll
Dragonflies (Odonata: Anisoptera) are an important component of both aquatic and terrestrial food webs and are vectors for methylmercury (MeHg) biomagnification. Variations in mercury content with life stage and body regions may affect the relative transfer of mercury to aquatic or terrestrial food webs; however, there has been little research on this subject. Also, little is known about mercury bioaccumulation in different body regions of dragonflies. To address these knowledge gaps, dragonfly naiads, adults, and exuviae were collected at 2 lakes in Kejimkujik National Park, Nova Scotia, Canada, and mercury concentrations in different life stages and body regions were quantified. Mean whole body concentrations of MeHg were substantial in naiads (232 ± 112 ng g(-1) dry wt, n = 66), emerging adults (236 ± 50 ng g(-1) dry wt, n = 10), and mature adults (231 ± 74 ng g(-1) dry wt, n = 20). Mean MeHg concentrations in exuviae (5.6 ± 4.3 ng g(-1), n = 32) were 40-fold lower than in naiads and adults. Emerging adults had 2-fold to 2.5-fold higher Hg(II) concentrations than naiads, mature adults, and exuviae. In body regions of both naiads and adults, some abdomens contained significantly higher concentrations of Hg(II) than heads or thoraces, and this trend was consistent across families. Across families, Aeshnidae had significantly higher concentrations of MeHg and total Hg than Gomphidae and Libellulidae, but not higher than Cordulidae. The Hg(II) concentrations were lower in Aeshnidae and Libellulidae than in Gomphidae and Cordulidae. Shedding of exuviae presents a possible mechanism for mercury detoxification, but mercury concentrations and burdens in exuviae are low in comparison with naiads and adults. Dragonfly adults retain a high potential for transferring substantial amounts of MeHg to their predators.
Environmental Toxicology and Chemistry | 2013
Tom Sizmur; João Canário; Samuel T. Edmonds; Adam Godfrey; Nelson J. O'Driscoll
The polychaete worm Nereis diversicolor engineers its environment by creating oxygenated burrows in anoxic intertidal sediments. The authors carried out a laboratory microcosm experiment to test the impact of polychaete burrowing and feeding activity on the lability and methylation of mercury in sediments from the Bay of Fundy, Canada. The concentration of labile inorganic mercury and methylmercury in burrow walls was elevated compared to worm-free sediments. Mucus secretions and organic detritus in worm burrows increased labile mercury concentrations. Worms decreased sulfide concentrations, which increased Hg bioavailability to sulfate-reducing bacteria and increased methylmercury concentrations in burrow linings. Because the walls of polychaete burrows have a greater interaction with organisms, and the overlying water, the concentrations of mercury and methylmercury they contain is more toxicologically relevant to the base of a coastal food web than bulk samples. The authors recommend that researchers examining Hg in marine environments account for sediment dwelling invertebrate activity to more fully assess mercury bioavailability.