Nelson Jorge da Silva
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nelson Jorge da Silva.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2001
Nelson Jorge da Silva; Steven D. Aird
Toxicities of crude venoms from 49 coral snake (Micrurus sp.) populations, representing 15 nominal taxa, were examined in both laboratory mice and in native prey animals and compared with data gathered from two non-micrurine elapids and a crotalid, which served as outgroups. These venoms were further compared on the basis of 23 enzymatic activities. Both toxicities and enzymatic activities were analyzed with respect to natural prey preferences, as determined from stomach content analyses and literature reports. Venoms of nearly all Micrurus for which prey preferences are known, are more toxic to natural prey than to non-prey species. Except for amphisbaenians, prey are more susceptible to venoms of Micrurus that feed upon them, than to venoms of those that eat other organisms. All venoms were more toxic i.v.>i.p.>i.m. Route-specific differences in toxicity are generally greatest for preferred prey species. Cluster analyses of venom enzymatic activities resulted in five clusters, with the fish-eating M. surinamensis more distant from other Micrurus than even the crotalid, Bothrops moojeni. Ophiophagous and amphisbaenian-eating Micrurus formed two close subclusters, one allied to the outgroup species Naja naja and the other to the fossorial, ophiophagous Bungarus multicinctus. Prey preference is shown to be the most important determinant of venom composition in Micrurus.
Comparative Biochemistry and Physiology B | 1991
Steven D. Aird; Nelson Jorge da Silva
1. Venoms of 11 coral snake taxa, including Micrurus albicinctus, M. corallinus, M. frontalis altirostris, M. f. brasiliensis, M. f. frontalis, M. fulvius fulvius, M. ibiboboca, M. lemniscatus ssp., M. randonianus, M. spixii spixii, and M. surinamensis surinamensis, were examined for 13 enzymatic activities. 2. These were compared with venoms of three outgroup taxa: Naja naja kaouthia, Bungarus multicinctus, and Bothrops moojeni. 3. Enzyme activity levels in Micrurus venoms were highly variable from species to species. 4. All venoms possessed phospholipase activity. 5. Protease activity against synthetic or dyed natural substrates was generally negligible in all elapid venoms examined. By contrast, most Micrurus venoms displayed ample L-leucine aminopeptidase activity. 6. Venom of M.s. surinamensis was significantly different from those of its congeners in most assays.
Toxicon | 1997
Brian R. Francis; Nelson Jorge da Silva; Corrine Seebart; Luciana Lyra Casais e Silva; James J. Schmidt; Ivan I. Kaiser
Toxins isolated from the venom of the Brazilian coral snake (Micrurus frontalis frontalis) include hemorrhagic type phospholipases A2 and postsynaptic neurotoxins. Toxicon 35, 1193-1203, 1997.-Two sets of proteins have been purified from the venom of the Brazilian coral snake, Micrurus frontalis frontalis. One set has mol. wts, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), in the 8000-13,000 range and includes some proteins which are toxic to mice and others which are not. These proteins appear to be isoforms of postsynaptic toxins. The other set shows phospholipase A2 (PLA2) activity and the toxic members of this set promote hemorrhage in mice in a manner closely resembling that produced by PLA2s isolated from the venom of the Australian tiger snake (Notechis scutatus scutatus). These PLA2s migrate on SDS-PAGE with apparent mol. wts in the 18,000-22,000 range which is characteristic of PLA2s that have an alpha-helix D similar to pancreatic PLA2s. Elapid venom PLA2s of the type which typically migrate on SDS-PAGE with mol. wts in the 13,000-16,000 range and do not have alpha-helix D have not been detected in M. f. frontalis venom.
Toxicon | 2008
Marta R. Magalhães; Nelson Jorge da Silva; Cirano José Ulhoa
Freshwater stingrays (Potamotrygon motoro) are known to cause human accidents through a sting located in its tail. In the State of Goiás, this accident happens especially during the fishing season of the Araguaia River. The P. motoro venom extracted from the sting presented hyaluronidase activity. The enzyme was purified by gel filtration on Sephacryl S-100 and ion-exchange chromatography on SP-Sepharose. A typical procedure provided 376.4-fold purification with a 2.94% yield. The molecular weight of the purified enzyme was 79 kDa as estimated by gel filtration on Sephacryl S-100. The K(m) and V(max) values for hyaluronidase, using hyaluronic acid as substrate, were 4.91 microg/ml and 2.02 U/min, respectively. The pH optimum for the enzyme was pH 4.2 and maximum activity was obtained at 40 degrees C. The hyaluronidase from P. motoro was shown to be heat instable, being stabilized by bovine albumin and DTT, and inhibited by Fe(2+), Mn(2+), Cu(2+) and heparin.
Toxicon | 1989
Nelson Jorge da Silva; Steven D. Aird; Corrine Seebart; Ivan I. Kaiser
Clinical observations of possible neurotoxic activity in bushmaster (Lachesis muta muta) envenomations, coupled with the accepted ancestral relationship of Lachesis to other crotalids, suggested that Lachesis venom might contain a crotoxin-like molecule. Crude venom and gel-filtration fractions showed modest reactivity in enzyme-linked immunosorbent assays using rabbit polyclonal antibodies raised against the basic subunit of crotoxin, but no reaction was detected with a murine monoclonal antibody raised against the same antigen. Phospholipase assays, LD50 determinations and SDS-polyacrylamide gel electrophoresis indicated the presence of non-toxic phospholipases, but no crotoxin homologs. A higher mol.wt, toxic protein (60,000) with an LD50 of 0.07 micrograms/g in mice was isolated and purified, which induced gyroxin-like, rapid rolling motions in mice. Its amino terminal sequence shows considerable amino acid sequence identity with gyroxin from the venom of Crotalus durissus terrificus and other serine proteases.
Toxicon | 1994
Alberto Alape-Girón; Bruno Lomonte; Björn Gustafsson; Nelson Jorge da Silva; Monica Thelestam
The electrophoretic mobilities of venom components from 15 Micrurus species were studied by polyacrylamide gel electrophoresis. The venoms showed species-specific protein patterns under native (PAGE) or denaturing (urea-PAGE) conditions. However, electrophoretic patterns obtained by SDS-PAGE under reducing conditions were similar. The proteins of all venoms had mol. wts either in the range of 45 to 75 kDa or lower than 14.5 kDa. PAGE and urea-PAGE of single extraction venom samples from 22 M. nigrocinctus nigrocinctus specimens revealed some proteins completely conserved, whereas others exhibited intraspecies variation. Based on ELISA cross-reactivity studies with 11 monoclonal antibodies against M. n. nigrocinctus venom, venoms from M. n. nigrocinctus, M. nigrocinctus mosquitensis, M. fulvius fulvius, M. dumerilii carnicauda and M. albicinctus were included in the same antigenic group, whereas M. frontalis frontalis and M. frontalis braziliensis venoms constituted a second group. Micrurus alleni and M. spixii spixii showed reactivity patterns similar to groups 1 and 2, respectively. Venoms from M. surinamensis surinamensis, M. corallinus, M. ibiboboca, M. hemiprichii ortoni, M. lemniscatus helleri and M. mipartitus had unique cross-reactivity patterns with monoclonal antibodies against M. n. nigrocinctus venom.
Toxicon | 1991
Raimundo Nonato Leite Pinto; Nelson Jorge da Silva; Steven D. Aird
A 4-year-old girl was hospitalized 10 hr after having been envenomated by a 1.4 m Clelia clelia plumbea, a colubrid. Although the patient exhibited pronounced edema and local hemorrhage, she did not manifest systemic symptoms. Because the attending physician viewed the case as a possible Bothrops bite, anti-Bothrops antivenom (FUNED) was administered. All local symptoms disappeared gradually over a period of 3 days.
Genetica | 2011
Mariana Pires de Campos Telles; Rosane G. Collevatti; Marcio Candido da Costa; Ronaldo Borges Barthem; Nelson Jorge da Silva; Advaldo Carlos Souza Neto; José Alexandre Felizola Diniz-Filho
One of the most intriguing patterns of migration and gene flow that affects genetic structure is the reproductive homing behavior of fishes, wherein the adults return to the areas in which they were spawned. Here we reviewed the literature on homing behavior in fish and propose an analytical framework for testing hypotheses regarding this behavior and its effects on the genetic structure of fish in an explicit geographical context, using a geographical genetics toolbox. Although disentangling the many potential causes underlying genetic population structure and unambiguously demonstrating that the homing behavior causes these genetic patterns is difficult, our framework allows the successive testing of homing behavior with increasing levels of complexity based on the following: (1) establishment of population structures among waterheads; (2) patterns of genetic variability throughout the adult migratory pool; (3) analyses of the non-migratory adult pool; and (4) comparisons among successive generations. We expect that the framework presented here will help delineating the appropriate uses of different sampling designs to make inferences regarding homing behavior and illustrate the limits imposed by the interpretation of different types of genetic data. More importantly, we hope this framework enables researchers to understand how a particular dataset can be utilized in a broader context as an ongoing part of a larger research program and thus guide future research by developing better and more integrated sampling designs.
Toxins | 2017
Steven D. Aird; Nelson Jorge da Silva; Lijun Qiu; Alejandro Villar-Briones; Vera Saddi; Mariana Pires de Campos Telles; Miguel Grau; Alexander S. Mikheyev
Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2–6 toxin classes that account for 91–99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A2 (PLA2s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA2s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1–2.0%) are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%). Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6–9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three species by gene duplication and fusion. Four species have transcripts homologous to the nociceptive toxin, (MitTx) α-subunit, but all six species had homologs to the β-subunit. The first non-neurotoxic, non-catalytic elapid phospholipase A2s are reported. All are probably myonecrotic. Phylogenetic analysis indicates that the six taxa diverged 15–35 million years ago and that they split from their last common ancestor with Old World elapines nearly 55 million years ago. Given their early diversification, many cryptic micrurine taxa are anticipated.
Toxins | 2015
Nelson Jorge da Silva; Kalley Ricardo Clementino Ferreira; Raimundo Nonato Leite Pinto; Steven D. Aird
Freshwater stingrays cause many serious human injuries, but identification of the offending species is uncommon. The present case involved a large freshwater stingray, Potamotrygon motoro (Chondrichthyes: Potamotrygonidae), in the Araguaia River in Tocantins, Brazil. Appropriate first aid was administered within ~15 min, except that an ice pack was applied. Analgesics provided no pain relief, although hot compresses did. Ciprofloxacin therapy commenced after ~18 h and continued seven days. Then antibiotic was suspended; however, after two more days and additional tests, cephalosporin therapy was initiated, and proved successful. Pain worsened despite increasingly powerful analgesics, until debridement of the wound was performed after one month. The wound finally closed ~70 days after the accident, but the patient continued to have problems wearing shoes even eight months later. Chemistry and pharmacology of Potamotrygon venom and mucus, and clinical management of freshwater stingray envenomations are reviewed in light of the present case. Bacterial infections of stingray puncture wounds may account for more long-term morbidity than stingray venom. Simultaneous prophylactic use of multiple antibiotics is recommended for all but the most superficial stingray wounds. Distinguishing relative contributions of venom, mucus, and bacteria will require careful genomic and transcriptomic investigations of stingray tissues and contaminating bacteria.