Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nen Saito is active.

Publication


Featured researches published by Nen Saito.


Physical Review E | 2015

Theoretical analysis of discreteness-induced transition in autocatalytic reaction dynamics.

Nen Saito; Kunihiko Kaneko

Transitions in the qualitative behavior of chemical reaction dynamics with a decrease in molecule number have attracted much attention. Here, a method based on a Markov process with a tridiagonal transition matrix is applied to the analysis of this transition in reaction dynamics. The transition to bistability due to the small-number effect and the mean switching time between the bistable states are analytically calculated in agreement with numerical simulations. In addition, a novel transition involving the reversal of the chemical reaction flow is found in the model under an external flow, and also in a three-component model. The generality of this transition and its correspondence to biological phenomena are also discussed.


Physical Review E | 2010

Multicanonical sampling of rare events in random matrices

Nen Saito; Yukito Iba; Koji Hukushima

A method based on multicanonical Monte Carlo is applied to the calculation of large deviations in the largest eigenvalue of random matrices. The method is successfully tested with the Gaussian orthogonal ensemble, sparse random matrices, and matrices whose components are subject to uniform density. Specifically, the probability that all eigenvalues of a matrix are negative is estimated in these cases down to the values of ∼10(-200), a region where simple random sampling is ineffective. The method can be applied to any ensemble of matrices and used for sampling rare events characterized by any statistics.


New Journal of Physics | 2013

Robustness leads close to the edge of chaos in coupled map networks: toward the understanding of biological networks

Nen Saito; Macoto Kikuchi

Dynamics in biological networks are, in general, robust against several perturbations. We investigate a coupled map network as a model motivated by gene regulatory networks and design systems that are robust against phenotypic perturbations (perturbations in dynamics), as well as systems that are robust against mutation (perturbations in network structure). To achieve such a design, we apply a multicanonical Monte Carlo method. Analysis based on the maximum Lyapunov exponent and parameter sensitivity shows that systems with marginal stability, which are regarded as systems at the edge of chaos, emerge when robustness against network perturbations is required. This emergence of the edge of chaos is a self-organization phenomenon and does not need a fine tuning of parameters.


Annals of the Institute of Statistical Mathematics | 2014

Multicanonical MCMC for sampling rare events: an illustrative review

Yukito Iba; Nen Saito; Akimasa Kitajima

Multicanonical MCMC (Multicanonical Markov Chain Monte Carlo; Multicanonical Monte Carlo) is discussed as a method of rare event sampling. Starting from a review of the generic framework of importance sampling, multicanonical MCMC is introduced, followed by applications in random matrices, random graphs, and chaotic dynamical systems. Replica exchange MCMC (also known as parallel tempering or Metropolis-coupled MCMC) is also explained as an alternative to multicanonical MCMC. In the last section, multicanonical MCMC is applied to data surrogation; a successful implementation in surrogating time series is shown. In the appendix, calculation of averages and normalizing constant in an exponential family, phase coexistence, simulated tempering, parallelization, and multivariate extensions are discussed.


Computer Physics Communications | 2011

Probability of graphs with large spectral gap by multicanonical Monte Carlo

Nen Saito; Yukito Iba

Graphs with large spectral gap are important in various fields such as biology, sociology and computer science. In designing such graphs, an important question is how the probability of graphs with large spectral gap behaves. A method based on multicanonical Monte Carlo is introduced to quantify the behavior of this probability, which enables us to calculate extreme tails of the distribution. The proposed method is successfully applied to random 3-regular graphs and large deviation probability is estimated.


Physical Review E | 2013

Baldwin effect under multipeaked fitness landscapes: phenotypic fluctuation accelerates evolutionary rate.

Nen Saito; Shuji Ishihara; Kunihiko Kaneko

Phenotypic fluctuations and plasticity can generally affect the course of evolution, a process known as the Baldwin effect. Several studies have recast this effect and claimed that phenotypic plasticity accelerates evolutionary rate (the Baldwin expediting effect); however, the validity of this claim is still controversial. In this study, we investigate the evolutionary population dynamics of a quantitative genetic model under a multipeaked fitness landscape, in order to evaluate the validity of the effect. We provide analytical expressions for the evolutionary rate and average population fitness. Our results indicate that under a multipeaked fitness landscape, phenotypic fluctuation always accelerates evolutionary rate, but it decreases the average fitness. As an extreme case of the trade-off between the rate of evolution and average fitness, phenotypic fluctuation is shown to accelerate the error catastrophe, in which a population fails to sustain a high-fitness peak. In the context of our findings, we discuss the role of phenotypic plasticity in adaptive evolution.


New Journal of Physics | 2014

Evolution of genetic redundancy: the relevance of complexity in genotype?phenotype mapping

Nen Saito; Shuji Ishihara; Kunihiko Kaneko

Despite its ubiquity among organisms, genetic redundancy is presumed to reduce total population fitness and is therefore unlikely to evolve. This study evaluates an evolutionary model with high-dimensional genotype?phenotype mapping (GPM) by applying a replica method to deal with quenched randomness. From the method, the dependence of fitness on genetic redundancy is analytically calculated. The results demonstrate that genetic redundancy can have higher population fitness under complex GPM, which tends to favor gene duplication in selection processes, further enhancing the potential for evolutionary innovations.


Scientific Reports | 2017

Embedding dual function into molecular motors through collective motion

Nen Saito; Kunihiko Kaneko

Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently.


PLOS Computational Biology | 2016

Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates

Jumpei Yamagishi; Nen Saito; Kunihiko Kaneko

As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with limited resources, and is consistent with the observed behaviors and forms of several aggregates of unicellular organisms.The origin of multicellularity is a fundamental open question in biology. For multicellular organisms to evolve from an aggregate of unicellular organisms, cells with an identical genotype must first differentiate into several types. Second, this aggregate of distinct cell types should show better growth than that of an isolated cell in the environment. Third, this cell aggregate should show robustness in the number distribution of differentiated cell types. To reveal how an ensemble of primitive cells achieves these conditions, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients to internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate induced by cell-cell interactions, and then achieve cooperative division of labor, the mutual use of products among differentiated cell types, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth sometimes emerged even among the cooperative cells when the internal reserves of chemical products is dominant. The simplicity and generality of the present mechanism suggests that evolution to multicellularity is a natural consequence of interacting cells with limited resources, being consistent with the behaviors and forms of several extant primitive forms of multicellularity, such as certain bacteria.


arXiv: Cell Behavior | 2015

Symbiotic Cell Differentiation and Cooperative Growth for the Emergence of Multicellularity

Jumpei Yamagishi; Nen Saito; Kunihiko Kaneko

Collaboration


Dive into the Nen Saito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge