Nenad Vukmirović
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nenad Vukmirović.
Advanced Materials | 2011
Gao Liu; Shidi Xun; Nenad Vukmirović; Xiangyun Song; Paul Olalde-Velasco; Honghe Zheng; Vince Battaglia; Lin-Wang Wang; Wanli Yang
A conductive polymer is developed for solving the long-standing volume change issue in lithium battery electrodes. A combination of synthesis, spectroscopy and simulation techniques tailors the electronic structure of the polymer to enable in situ lithium doping. Composite anodes based on this polymer and commercial Si particles exhibit 2100 mAh g -1 in Si after 650 cycles without any conductive additive. Copyright
Journal of the American Chemical Society | 2013
Mingyan Wu; Xingcheng Xiao; Nenad Vukmirović; Shidi Xun; Prodip K. Das; Xiangyun Song; Paul Olalde-Velasco; Dongdong Wang; Adam Z. Weber; Lin-Wang Wang; Vincent S. Battaglia; Wanli Yang; Gao Liu
The dilemma of employing high-capacity battery materials and maintaining the electronic and mechanical integrity of electrodes demands novel designs of binder systems. Here, we developed a binder polymer with multifunctionality to maintain high electronic conductivity, mechanical adhesion, ductility, and electrolyte uptake. These critical properties are achieved by designing polymers with proper functional groups. Through synthesis, spectroscopy, and simulation, electronic conductivity is optimized by tailoring the key electronic state, which is not disturbed by further modifications of side chains. This fundamental allows separated optimization of the mechanical and swelling properties without detrimental effect on electronic property. Remaining electronically conductive, the enhanced polarity of the polymer greatly improves the adhesion, ductility, and more importantly, the electrolyte uptake to the levels of those available only in nonconductive binders before. We also demonstrate directly the performance of the developed conductive binder by achieving full-capacity cycling of silicon particles without using any conductive additive.
Journal of Physical Chemistry B | 2009
Nenad Vukmirović; Lin-Wang Wang
Electronic structure of disordered semiconducting conjugated polymers was studied. Atomic structure was found from a classical molecular dynamics simulation, and the charge patching method was used to calculate the electronic structure with the accuracy similar to the one of density functional theory in local density approximation. The total density of states, the local density of states at different points in the system, and the wave functions of several states around the gap were calculated in the case of poly(3-hexylthiophene) (P3HT) and polythiophene (PT) systems to gain insight into the origin of disorder in the system, the degree of carrier localization, and the role of chain interactions. The results indicated that disorder in the electronic structure of alkyl-substituted polythiophenes comes from disorder in the conformation of individual chains, while in the case of polythiophene there is an additional contribution due to disorder in the electronic coupling between the chains. Each of the first several wave functions in the conduction and valence band of P3HT is localized over several rings of a single chain. It was shown that the localization can be caused in principle both by ring torsions and chain bending; however, the effect of ring torsions is much stronger. PT wave functions are more complicated due to larger interchain electronic coupling and are not necessarily localized on a single chain.
Applied Physics Letters | 2005
V. D. Jovanović; D. Indjin; Nenad Vukmirović; Z. Ikonić; P. Harrison; E. H. Linfield; H. Page; X. Marcadet; C. Sirtori; Chris Worrall; Harvey E. Beere; D. A. Ritchie
The influence of doping density on the performance of GaAs∕AlGaAs quantum-cascade lasers is presented. A fully self-consistent Schrodinger–Poisson analysis, based on a scattering rate equation approach, was employed to simulate the above threshold electron transport in laser devices. V-shaped local field domain formation was observed, preventing resonant subband level alignment in the high pumping-current regime. The resulting saturation of the maximal current, together with an increase of the threshold current, limits the dynamic working range under higher doping. Experimental measurements are in good agreement with the theoretical predictions.
Nano Letters | 2009
Nenad Vukmirović; Lin-Wang Wang
We developed an ab initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3-hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.
Journal of Applied Physics | 2005
Nenad Vukmirović; V. D. Jovanović; D. Indjin; Z. Ikonić; P. Harrison; V. Milanović
A design for a GaN∕AlGaN optically pumped terahertz laser emitting at 34 μm (ΔE∼36meV) is presented. This laser uses a simple three-level scheme where the depopulation of the lower laser level is achieved via resonant longitudinal-optical-phonon emission. The quasibound energies and associated wave functions are calculated with the intrinsic electric field induced by the piezoelectric and the spontaneous polarizations. The structures based on a double quantum well were simulated and the output characteristics extracted using a fully self-consistent rate equation model with all relevant scattering processes included. Both electron-longitudinal-optical phonon and electron-acoustic-phonon interactions were taken into account. The carrier distribution in subbands was assumed to be Fermi–Dirac-like, with electron temperature equal to the lattice temperature, but with different Fermi levels for each subband. A population inversion of 12% for a pumping flux Φ=1027cm−2s−1 at room temperature was calculated for th...
Journal of Applied Physics | 2006
V. D. Jovanović; Sven Höfling; D. Indjin; Nenad Vukmirović; Z. Ikonić; P. Harrison; J. P. Reithmaier; A. Forchel
A detailed theoretical and experimental study of the influence of injector doping on the output characteristics and electron heating in midinfrared GaAs∕AlGaAs quantum cascade lasers is presented. The employed theoretical model of electron transport was based on a fully nonequilibrium self-consistent Schrodinger-Poisson analysis of the scattering rate and energy balance equations. Three different devices with injector sheet doping densities in the range of (4–6.5)×1011cm–2 have been grown and experimentally characterized. Optimized arsenic fluxes were used for the growth, resulting in high-quality layers with smooth surfaces and low defect densities. A quasilinear increase of the threshold current with sheet injector doping has been observed both theoretically and experimentally. The experimental and calculated current-voltage characteristics are in a very good agreement. A decrease of the calculated coupling constant of average electron temperature versus the pumping current with doping level was found.
Journal of Applied Physics | 2006
Lan Fu; Hoe Hark Tan; Ian McKerracher; J. Wong-Leung; Chennupati Jagadish; Nenad Vukmirović; P. Harrison
In this work, rapid thermal annealing was performed on InGaAs∕GaAs quantum dot infrared photodetectors (QDIPs) at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700°C, as a result of thermal interdiffusion of the quantum dots (QDs). Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800°C, in addition to the largely redshifted photoresponse peak of 7.4μm (compared with the 6.1μm of the as-grown QDIP), a high energy peak at 5.6μm (220meV) was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overa...
Journal of Physical Chemistry B | 2011
Nenad Vukmirović; Lin-Wang Wang
We present large-scale calculations of electronic structure of strongly disordered conjugated polymers. The calculations have been performed using the density functional theory based charge patching method for the construction of single-particle Hamiltonian and the overlapping fragments method for the efficient diagonalization of that Hamiltonian. We find that the hole states are localized due to the fluctuations of the electrostatic potential and not by the breaks in the conjugation of the polymer chain. The tail of the density of hole states exhibits an exponentially decaying behavior. The main features of the electronic structure of the system can be described by an one-dimensional nearest neighbor tight-binding model with a correlated Gaussian distribution of on-site energies and constant off-site coupling elements.
Semiconductor Science and Technology | 2006
Nenad Vukmirović; Ž Gačević; Z. Ikonić; D. Indjin; P. Harrison; V. Milanović
Theoretical modelling of the intraband absorption spectrum in InAs/GaAs quantum dot infrared photodetectors is performed for several typical structures reported in the literature. The calculations are performed within the framework of the two methods: a simple and so far widely used effective mass method with the values of conduction band offset and the effective mass modified to take account of the effects of strain and band mixing on average and the more realistic eight-band k × p method with the strain distribution taken into account via the continuum mechanical model. Both methods give qualitatively the same results; however, the peak positions obtained within the effective mass approach are blue shifted and the absorption cross sections are overestimated, compared to the more accurate k × p approach.